HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

A Structure Variation in qPH8.2 Detrimentally Affects Plant Architecture and Yield in Rice.

Abstract
Plant height is an important agronomic trait associated with plant architecture and grain yield in rice (Oryza sativa L.). In this study, we report the identification of quantitative trait loci (QTL) for plant height using a chromosomal segment substitution line (CSSL) population with substituted segments from japonica variety Nipponbare (NIP) in the background of the indica variety 9311. Eight stable QTLs for plant height were identified in three environments. Among them, six loci were co-localized with known genes such as semidwarf-1 (sd1) and Grain Number per Panicle1 (GNP1) involved in gibberellin biosynthesis. A minor QTL qPH8.2 on chromosome 8 was verified and fine-mapped to a 74 kb region. Sequence comparison of the genomic region revealed the presence/absence of a 42 kb insertion between NIP and 9311. This insertion occurred predominantly in temperate japonica rice. Comparisons on the near-isogenic lines showed that the qPH8.2 allele from NIP exhibits pleiotropic effects on plant growth, including reduced plant height, leaf length, photosynthetic capacity, delayed heading date, decreased yield, and increased tiller angle. These results indicate that qPH8.2 from temperate japonica triggers adverse effects on plant growth and yield when introduced into the indica rice, highlighting the importance of the inter-subspecies crossing breeding programs.
AuthorsWenqiang Sun, Qiang Sun, Li Tian, Yongjian Sun, Sibin Yu
JournalPlants (Basel, Switzerland) (Plants (Basel)) Vol. 12 Issue 18 (Sep 21 2023) ISSN: 2223-7747 [Print] Switzerland
PMID37765500 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: