HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Optimization of dabi teff-field pea based energy and protein dense novel complementary food with improved sensory acceptability using D-optimal mixture design.

Abstract
Protein-energy malnutrition is unacceptably high among children in developing countries due to inadequate required nutrients and poor quality of complementary foods characterized by low protein and energy density and often monotonous. Thus, this research was aimed at examining the potential of including dabi teff, the underutilized/forgotten crop into pre-processed local food crops viz., germinated maize, roasted barley, roasted field pea, dehulled oats and linseed to develop energy and protein-dense optimized novel complementary food with improved sensory acceptability. Nutrisurvey software was employed to define ranges and they were constrained at 20-35% dabi teff, 0-30% field pea and 5-20% maize, while the rest were set constant at 25% barley, 15% oats and 5% linseed. Eleven experimental runs were generated from the six mixture components using D-optimal mixture design, Stat-Ease Design Expert ® software version 11. A 5-point Hedonic scale was used to evaluate the sensory attributes. 'Scheffe' regression was used to fit and test model adequacy and numerical multi-response optimization was performed to identify optimal points using the Design expert. Field pea and linseed contained significantly higher (P < 0.05) protein at 20.95% and 20.57%. The newly formulated products contained significantly higher protein (1.4-1.6 times) and protein density (1.31-1.56 times) as compared to the control and fulfilled the recommended standard. The optimal was identified at 34.66% dabi teff, 25% barley, 15% oats, 15.34% field pea, 5% linseed and 5% maize flour ratios with response values at overall optimization to be 5.57% moisture, 15.74% protein, 5.09% fat, 2.26% ash, 2.88% fiber, 73.05% carbohydrate, 380.43 kcal/100 g energy and 4.12 sensory acceptability score and it contained an energy density of 1.27 kcal/g and protein density of 4.14 g/100kacl. These findings showed that optimized dabi teff-field pea based novel complementary food can be used as a sustainable food-based strategy to combat protein-energy malnutrition among children in developing countries.
AuthorsDiriba Chewaka Tura, Tefera Belachew, Dessalegn Tamiru, Kalkidan Hassen Abate
JournalHeliyon (Heliyon) Vol. 9 Issue 8 Pg. e19029 (Aug 2023) ISSN: 2405-8440 [Print] England
PMID37664734 (Publication Type: Journal Article)
Copyright© 2023 The Authors.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: