HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cell-Derived Extracellular Matrix Fiber Scaffolds Improve Recovery from Volumetric Muscle Loss.

Abstract
There are currently no surgical procedures that effectively address the treatment of volumetric muscle loss (VML) injuries that has motivated the development of implantable scaffolding. In this study, the effectiveness of an allogenic scaffold fabricated using fibers built from the extracellular matrix (ECM) collected from muscle fibroblast cells during growth in culture was explored using a hindlimb VML injury (tibialis anterior muscle) in a rat model. Recovery outcomes (8 weeks) were explored in comparison with unrepaired controls as well previously examined allogenic scaffolds prepared from decellularized skeletal muscle (DSM) tissue (n = 9/sample group). At 8-week follow-up, we found that the repair of VML injuries using ECM fiber scaffolds in combination with an autogenic mince muscle (MM) paste significantly improved the recovery of peak contractile torque (79% ± 13% of uninjured contralateral muscle) when compared with unrepaired VML controls (57% ± 13%). Similar significant improvements were measured for muscle mass restoration (93% ± 10%) in response to ECM fiber+MM repair when compared with unrepaired VML controls (73% ± 13%). Of note, mass and contractile strength recovery outcomes for ECM fiber scaffolds were not significantly different from DSM+MM repair controls. These in vivo findings support the further exploration of cell-derived ECM fiber scaffolds as a promising strategy for the repair of VML injury with recovery outcomes that compare favorably with current tissue-sourced ECM scaffolds. Furthermore, although the therapeutic potential of ECM fibers as a treatment strategy for muscle injury was explored in this study, they could be adapted for high-throughput fabrication methods developed and routinely used by the textile industry to create a broad range of woven implants (e.g., hernia meshes) for even greater clinical impact.
AuthorsCassandra Reed, Tai Huynh, Jacob Schluns, Payton Phelps, Jamie Hestekin, Jeffrey C Wolchok
JournalTissue engineering. Part A (Tissue Eng Part A) (Nov 21 2023) ISSN: 1937-335X [Electronic] United States
PMID37658842 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: