HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Imazethapyr disrupts plant phosphorus homeostasis and acquisition strategies.

Abstract
The deficiency of essential mineral nutrients caused by xenobiotics often results in plant mortality or an inability to complete its life cycle. Imazethapyr, a widely utilized imidazolinone herbicide, has a long-lasting presence in the soil-plant system and can induce toxicity in non-target plants. However, the effects of imazethapyr on mineral nutrient homeostasis remain poorly comprehended. In this study, Arabidopsis seedlings exposed to concentrations of 4 and 10 μg/L imazethapyr showed noticeable reductions in shoot development and displayed a distinct dark purple color, which is commonly associated with phosphorus (P) deficiency in crops. Additionally, the total P content in both the shoots and roots of Arabidopsis significantly decreased following imazethapyr treatment when compared to the control groups. Through the complementary use of physiological and molecular analyses, we discovered that imazethapyr hinders the abundance and functionality of inorganic phosphorus (Pi) transporters and acid phosphatase. Furthermore, imazethapyr impairs the plant's Pi-deficiency adaptation strategies, such as inhibiting Pi transporter activities and impeding root hair development, which ultimately exacerbate P starvation. These results provide compelling evidence that residues of imazethapyr have the potential to disrupt plant P homeostasis and acquisition strategies. These findings offer valuable insights for risk assessment and highlight the need to reconsider the indiscriminate use of imazethapyr, particularly under specific scenarios such as nutrient deficiency.
AuthorsYihao Li, Nan Zhang, Jiarui Xu, Lijuan Liu, Xiaochuang Cao, Xianyong Lin, Chengliang Sun
JournalJournal of hazardous materials (J Hazard Mater) Vol. 460 Pg. 132317 (10 15 2023) ISSN: 1873-3336 [Electronic] Netherlands
PMID37619275 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2023 Elsevier B.V. All rights reserved.
Chemical References
  • Phosphorus
  • imazethapyr
Topics
  • Phosphorus
  • Arabidopsis
  • Crops, Agricultural
  • Homeostasis

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: