HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Primary and hTERT-Transduced Mesothelioma-Associated Fibroblasts but Not Primary or hTERT-Transduced Mesothelial Cells Stimulate Growth of Human Mesothelioma Cells.

Abstract
Pleural mesothelioma (PM) is an aggressive malignancy that develops in a unique tumor microenvironment (TME). However, cell models for studying the TME in PM are still limited. Here, we have generated and characterized novel human telomerase reverse transcriptase (hTERT)-transduced mesothelial cell and mesothelioma-associated fibroblast (Meso-CAF) models and investigated their impact on PM cell growth. Pleural mesothelial cells and Meso-CAFs were isolated from tissue of pneumothorax and PM patients, respectively. Stable expression of hTERT was induced by retroviral transduction. Primary and hTERT-transduced cells were compared with respect to doubling times, hTERT expression and activity levels, telomere lengths, proteomes, and the impact of conditioned media (CM) on PM cell growth. All transduced derivatives exhibited elevated hTERT expression and activity, and increased mean telomere lengths. Cell morphology remained unchanged, and the proteomes were similar to the corresponding primary cells. Of note, the CM of primary and hTERT-transduced Meso-CAFs stimulated PM cell growth to the same extent, while CM derived from mesothelial cells had no stimulating effect, irrespective of hTERT expression. In conclusion, all new hTERT-transduced cell models closely resemble their primary counterparts and, hence, represent valuable tools to investigate cellular interactions within the TME of PM.
AuthorsAlexander Ries, Astrid Slany, Christine Pirker, Johanna C Mader, Doris Mejri, Thomas Mohr, Karin Schelch, Daniela Flehberger, Nadine Maach, Muhammad Hashim, Mir Alireza Hoda, Balazs Dome, Georg Krupitza, Walter Berger, Christopher Gerner, Klaus Holzmann, Michael Grusch
JournalCells (Cells) Vol. 12 Issue 15 (08 05 2023) ISSN: 2073-4409 [Electronic] Switzerland
PMID37566084 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Proteome
  • Telomerase
Topics
  • Humans
  • Proteome (metabolism)
  • Telomerase (metabolism)
  • Mesothelioma (genetics)
  • Mesothelioma, Malignant
  • Fibroblasts (metabolism)
  • Pleural Neoplasms (genetics)
  • Tumor Microenvironment

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: