HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ferulic acid protects HepG2 cells and mouse liver from iron-induced damage.

Abstract
Liver as iron storage organ is particularly susceptible to oxidative stress-induced injury from excess iron. Thus, antioxidant therapies are often used to reverse oxidative damage and protect cells and tissues. This study investigated the protective effects of phenolic acids; ferulic acid (FA) and its metabolite, ferulic acid 4-O-sulfate disodium salt (FAS) against oxidative stress under iron overload conditions in mouse and HepG2 cells. Cells were exposed to FA or FAS and then treated with iron-induced oxidative stress complex of 50 μmol/L FAC and 20 μmol/L of 8-hydroxyquinoline 8HQ (8HQ-FAC). Iron dextran was injected intraperitoneally on alternate days for 10 days to induce the iron overload condition in BALB/c mice. The study revealed that the phenolic acids were protective against ROS production, lipid peroxidation and antioxidant depletion in HepG2 cells and liver tissues of BALB/c mice during iron-induced oxidative stress. The protective function of phenolic acids was achieved by the transcriptional activation of nuclear factor erythroid-2-related factor 2 (Nrf2) to regulate antioxidant genes. In conclusion, the study provides evidence that FA has the potential as a therapeutic agent against iron-related diseases such as T2D.
AuthorsTugba Kose, Jorge Moreno-Fernandez, Mayra Vera-Aviles, Paul A Sharp, Gladys O Latunde-Dada
JournalBiochemistry and biophysics reports (Biochem Biophys Rep) Vol. 35 Pg. 101521 (Sep 2023) ISSN: 2405-5808 [Electronic] Netherlands
PMID37560439 (Publication Type: Journal Article)
Copyright© 2023 Published by Elsevier B.V.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: