HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Advances in the stimuli-responsive mesoporous silica nanoparticles as drug delivery system nanotechnology for controlled release and cancer therapy.

Abstract
Mesoporous silica nanoparticles (MSN) have attracted widespread attention in the field of drug delivery and biomedicine due to their unique structure and physicochemical properties. However, MSN still have shortcomings, such as premature drug release, poorly controlled release ability and poor targeting. Therefore, in order to reduce the damage of anti-cancer drugs to normal cells, improve their utilization rate and realize their selective release in tumor cells, "gated" stimuli-responsive mesoporous silicon nanomaterials as antitumor drug delivery carriers have attracted widespread interest among researchers. The "gated" stimuli-responsive nanovalves drug delivery system can only be removed under certain specific stimuli, which makes the drug maintain "zero release" before reaching the lesion site and achieve drug accumulation in tumor cells, effectively reducing the toxic and side effects on normal cells or tissues, and greatly exerting the efficacy of anti-cancer drugs. Therefore, the construction of stimuli-responsive nano-drug delivery systems have great application potential and significance in cancer treatment and controlled release of anti-cancer drugs. This review article emphasizes the research progress of the "gated" stimuli-responsive MSN (e.g. pH, redox potential, enzyme, temperature and light) or controlled drug release and cancer treatment since 2019.
AuthorsYameng Zhu, Yu Bai, Jun He, Xilong Qiu
Journal3 Biotech (3 Biotech) Vol. 13 Issue 8 Pg. 274 (Aug 2023) ISSN: 2190-572X [Print] Germany
PMID37457870 (Publication Type: Journal Article, Review)
Copyright© King Abdulaziz City for Science and Technology 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: