HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Targeting ACYP1-mediated glycolysis reverses lenvatinib resistance and restricts hepatocellular carcinoma progression.

Abstract
Acylphosphatase 1 (ACYP1), a protein located in the mammalian cell cytoplasm, has been shown to be associated with tumor initiation and progression by functioning as a metabolism-related gene. Here we explored the potential mechanisms by which ACYP1 regulates the development of HCC and participates in the resistance to lenvatinib. ACYP1 can promote the proliferation, invasion, and migration capacities of HCC cells in vitro and in vivo. RNA sequencing reveals that ACYP1 markedly enhances the expression of genes related to aerobic glycolysis, and LDHA is identified as the downstream gene of ACYP1. Overexpression of ACYP1 upregulates LDHA levels, which then increases the malignancy potential of HCC cells. GSEA data analysis reveals the enrichment of differentially expressed genes in the MYC pathway, indicating a positive correlation between MYC and ACYP1 levels. Mechanistically, ACYP1 exerts its tumor-promoting roles by regulating the Warburg effect through activating the MYC/LDHA axis. Mass spectrometry analysis and Co-IP assays confirm that ACYP1 can bind to HSP90. The regulation of c-Myc protein expression and stability by ACYP1 is HSP90 dependent. Importantly, lenvatinib resistance is associated with ACYP1, and targeting ACYP1 remarkably decreases lenvatinib resistance and inhibits progression of HCC tumors with high ACYP1 expression when combined with lenvatinib in vitro and in vivo. These results illustrate that ACYP1 has a direct regulatory role in glycolysis and drives lenvatinib resistance and HCC progression via the ACYP1/HSP90/MYC/LDHA axis. Targeting ACYP1 could synergize with lenvatinib to treat HCC more effectively.
AuthorsShuai Wang, Lingyi Zhou, Ning Ji, Chengtao Sun, Linlin Sun, Jiao Sun, Yawei Du, Ningning Zhang, Yueguo Li, Weishuai Liu, Wei Lu
JournalDrug resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy (Drug Resist Updat) Vol. 69 Pg. 100976 (Jul 2023) ISSN: 1532-2084 [Electronic] Scotland
PMID37210811 (Publication Type: Journal Article)
CopyrightCopyright © 2023 Elsevier Ltd. All rights reserved.
Chemical References
  • lenvatinib
Topics
  • Animals
  • Humans
  • Carcinoma, Hepatocellular (drug therapy, genetics)
  • Liver Neoplasms (drug therapy, genetics)
  • Cell Line, Tumor
  • Cell Proliferation (genetics)
  • Glycolysis (genetics)
  • Gene Expression Regulation, Neoplastic
  • Mammals

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: