HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Substance P promotes epidural fibrosis via induction of type 2 macrophages.

Abstract
In response to spinal surgery, neurons secrete a large amount of substance P into the epidural area. Substance P is involved in macrophage differentiation and fibrotic disease. However, the specific roles and mechanisms of substance P in epidural fibrosis remain unclear. In this study, we established a mouse model of L1-L3 laminectomy and found that dorsal root ganglion neurons and the macrophages infiltrating into the wound area released sphingolipids. In vitro experiments revealed that type 1 macrophages secreted substance P, which promoted differentiation of type 1 macrophages towards a type 2 phenotype. High-throughput mRNA-seq analysis revealed that the sphingolipid metabolic pathway may be involved in the regulation of type 2 macrophages by substance P. Specifically, sphingomyelin synthase 2, a component of the sphingolipid metabolic pathway, promoted M2 differentiation in substance P-treated macrophages, while treating the macrophages with LY93, a sphingomyelin synthase 2 inhibitor, suppressed M2 differentiation. In addition, substance P promoted the formation of neutrophil extracellular traps, which further boosted M2 differentiation. Blocking substance P with the neurokinin receptor 1 inhibitor RP67580 decreased the number of M2 macrophages in the wound area after spinal surgery and alleviated epidural fibrosis, as evidenced by decreased fibronectin, α-smooth muscle actin, and collagen I in the scar tissue. These results demonstrated that substance P promotes M2 macrophage differentiation in epidural fibrosis via sphingomyelin synthase 2 and neutrophil extracellular traps. These findings provide a novel strategy for the treatment of epidural fibrosis.
AuthorsFeng Hua, Hao-Ran Wang, Yun-Feng Bai, Jin-Peng Sun, Wei-Shun Wang, Ying Xu, Ming-Shun Zhang, Jun Liu
JournalNeural regeneration research (Neural Regen Res) Vol. 18 Issue 10 Pg. 2252-2259 (Oct 2023) ISSN: 1673-5374 [Print] India
PMID37056145 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: