HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Ion Channels-related Neuroprotection and Analgesia Mediated by Spider Venom Peptides.

Abstract
Ion channels play critical roles in generating and propagating action potentials and in neurotransmitter release at a subset of excitatory and inhibitory synapses. Dysfunction of these channels has been linked to various health conditions, such as neurodegenerative diseases and chronic pain. Neurodegeneration is one of the underlying causes of a range of neurological pathologies, such as Alzheimer's disease (AD), Parkinson's disease (PD), cerebral ischemia, brain injury, and retinal ischemia. Pain is a symptom that can serve as an index of the severity and activity of a disease condition, a prognostic indicator, and a criterion of treatment efficacy. Neurological disorders and pain are conditions that undeniably impact a patient's survival, health, and quality of life, with possible financial consequences. Venoms are the best-known natural source of ion channel modulators. Venom peptides are increasingly recognized as potential therapeutic tools due to their high selectivity and potency gained through millions of years of evolutionary selection pressure. Spiders have been evolving complex and diverse repertoires of peptides in their venoms with vast pharmacological activities for more than 300 million years. These include peptides that potently and selectively modulate a range of targets, such as enzymes, receptors, and ion channels. Thus, components of spider venoms hold considerable capacity as drug candidates for alleviating or reducing neurodegeneration and pain. This review aims to summarize what is known about spider toxins acting upon ion channels, providing neuroprotective and analgesic effects.
AuthorsAna Caroline Nogueira Souza, Nancy Scardua Binda, Huemara Yuri Almeida, Célio José de Castro Júnior, Marcus Vinicius Gomez, Fabíola Mara Ribeiro, Juliana Figueira Da Silva
JournalCurrent protein & peptide science (Curr Protein Pept Sci) Vol. 24 Issue 5 Pg. 365-379 ( 2023) ISSN: 1875-5550 [Electronic] United Arab Emirates
PMID37018532 (Publication Type: Review, Journal Article)
CopyrightCopyright© Bentham Science Publishers; For any queries, please email at [email protected].
Chemical References
  • Spider Venoms
  • Ion Channels
  • Peptides
Topics
  • Animals
  • Spider Venoms (pharmacology)
  • Neuroprotection
  • Quality of Life
  • Ion Channels
  • Peptides (pharmacology, therapeutic use)
  • Pain (drug therapy)
  • Analgesia
  • Spiders

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: