HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Phosphatidylethanolamines Are Associated with Nonalcoholic Fatty Liver Disease (NAFLD) in Obese Adults and Induce Liver Cell Metabolic Perturbations and Hepatic Stellate Cell Activation.

Abstract
Pathogenesis roles of phospholipids (PLs) in nonalcoholic fatty liver disease (NAFLD) remain incompletely understood. This study investigated the role of PLs in the progression of NAFLD among obese individuals via studying the alterations in serum PL composition throughout the spectrum of disease progression and evaluating the effects of specific phosphatidylethanolamines (PEs) on FLD development in vitro. A total of 203 obese subjects, who were undergoing bariatric surgery, were included in this study. They were histologically classified into 80 controls (C) with normal liver histology, 93 patients with simple hepatic steatosis (SS), 16 with borderline nonalcoholic steatohepatitis (B-NASH) and 14 with progressive NASH (NASH). Serum PLs were profiled by automated electrospray ionization tandem mass spectrometry (ESI-MS/MS). HepG2 (hepatoma cells) and LX2 (immortalized hepatic stellate cells or HSCs) were used to explore the roles of PL in NAFLD/NASH development. Several PLs and their relative ratios were significantly associated with NAFLD progression, especially those involving PE. Incubation of HepG2 cells with two phosphatidylethanolamines (PEs), PE (34:1) and PE (36:2), resulted in significant inhibition of cell proliferation, reduction of mitochondrial mass and membrane potential, induction of lipid accumulation and mitochondrial ROS production. Meanwhile, treatment of LX2 cells with both PEs markedly increased cell activation and migration. These effects were associated with a significant change in the expression levels of genes involved in lipogenesis, lipid oxidation, autophagy, apoptosis, inflammation, and fibrosis. Thus, our study demonstrated that elevated level of PEs increases susceptibility to the disease progression of obesity associated NAFLD, likely through a causal cascade of impacts on the function of different liver cells.
AuthorsSamaa Shama, Hyejeong Jang, Xiaokun Wang, Yang Zhang, Nancy Nabil Shahin, Tarek Kamal Motawi, Seongho Kim, Samer Gawrieh, Wanqing Liu
JournalInternational journal of molecular sciences (Int J Mol Sci) Vol. 24 Issue 2 (Jan 05 2023) ISSN: 1422-0067 [Electronic] Switzerland
PMID36674549 (Publication Type: Journal Article)
Chemical References
  • Phosphatidylethanolamines
Topics
  • Humans
  • Adult
  • Non-alcoholic Fatty Liver Disease (metabolism)
  • Liver (metabolism)
  • Phosphatidylethanolamines (metabolism)
  • Hepatic Stellate Cells (metabolism)
  • Tandem Mass Spectrometry
  • Obesity (metabolism)
  • Disease Progression

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: