HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

OGG1 inhibition suppresses African swine fever virus replication.

Abstract
African swine fever virus (ASFV) is an important pathogen that causes a highly contagious and lethal disease in swine, for which neither a vaccine nor treatment is available. The DNA repair enzyme 8-oxoguanine DNA glycosylase 1 (OGG1), which excises the oxidative base lesion 8-oxo-7,8-dihydroguanine (8-oxoG), has been linked to the pathogenesis of different diseases associated with viral infections. However, the role of OGG1-base excision repair (BER) in ASFV infection has been poorly investigated. Our study aimed to characterize the alteration of host reactive oxygen species (ROS) and OGG1 and to analyse the role of OGG1 in ASFV infection. We found that ASFV infection induced high levels and dynamic changes in ROS and 8-oxoG and consistently increased the expression of OGG1. Viral yield, transcription level, and protein synthesis were reduced in ASFV-infected primary alveolar macrophages (PAMs) treated by TH5487 or SU0268 inhibiting OGG1. The expression of BER pathway associated proteins of ASFV was also suppressed in OGG1-inhibited PAMs. Furthermore, OGG1 was found to negatively regulate interferon β (IFN-β) production during ASFV infection and IFN-β could be activated by OGG1 inhibition with TH5487 and SU0268, which blocked OGG1 binding to 8-oxoG. Additionally, the interaction of OGG1 with viral MGF360-14-L protein could disturb IFN-β production to further affect ASFV replication. These results suggest that OGG1 plays the crucial role in successful viral infection and OGG1 inhibitors SU0268 or TH5487 could be used as antiviral agents for ASFV infection.
AuthorsJie Fan, Xinqian Lv, Saixia Yang, Shuxian Geng, Jifei Yang, Yaru Zhao, Zhonghui Zhang, Zhijie Liu, Guiquan Guan, Jianxun Luo, Qiaoying Zeng, Hong Yin, Qingli Niu
JournalVirologica Sinica (Virol Sin) Vol. 38 Issue 1 Pg. 96-107 (Feb 2023) ISSN: 1995-820X [Electronic] Netherlands
PMID36435451 (Publication Type: Journal Article)
CopyrightCopyright © 2022 The Authors. Publishing services by Elsevier B.V. All rights reserved.
Chemical References
  • Reactive Oxygen Species
Topics
  • Swine
  • Animals
  • African Swine Fever Virus (genetics)
  • Reactive Oxygen Species (metabolism)
  • DNA Repair
  • Oxidative Stress
  • African Swine Fever
  • Virus Replication

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: