HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Metabolomic Study of a Rat Model of Retinal Detachment.

Abstract
Retinal detachment is a serious ocular disease leading to photoreceptor degeneration and vision loss. However, the mechanism of photoreceptor degeneration remains unclear. The aim of this study was to investigate the altered metabolism pathway and physiological changes after retinal detachment. Eight-week-old male SD rats were fed, and the model of retinal detachment was established by injecting hyaluronic acid into the retinal space. The rats were euthanized 3 days after RD, and the retinal tissues were sectioned for analysis. Untargeted lipid chromatography-mass spectrometry lipidomic was performed to analyze the metabolite changes. A total of 90 significant metabolites (34 in anionic and 56 in cationic models) were detected after retinal detachment. The main pathways were (1) histidine metabolism; (2) phenylalanine, tyrosine, and tryptophan biosynthesis; and (3) glycine, serine, and threonine metabolism. The key genes corresponding to each metabolic pathway were verified from the Gene Expression Omnibus (GEO) database of human retinal samples. The results indicated that the production of histamine by histidine decarboxylase from histidine reduced after RD (p < 0.05). Xanthine, hypoxanthine, guanine, and guanosine decreased after RD (p < 0.05). Decreased xanthine and hypoxanthine may reduce the antioxidant ability. The decreased guanosine could not provide enough sources for inosine monophosphate production. Tyrosine is an important neurotransmitter and was significantly reduced after RD (p < 0.05). Citrate was significantly reduced with the increase of ATP-citrate lyase enzyme (ACLY) (p < 0.05). We inferred that lipid oxidation might increase rather than lipid biogenesis. Thus, this study highlighted the main changes of metabolite and physiological process after RD. The results may provide important information for photoreceptor degeneration.
AuthorsXiangjun She, Yifan Zhou, Zhi Liang, Jin Wei, Bintao Xie, Yun Zhang, Lijun Shen
JournalMetabolites (Metabolites) Vol. 12 Issue 11 (Nov 07 2022) ISSN: 2218-1989 [Print] Switzerland
PMID36355160 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: