HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

White blood cell count and chronic obstructive pulmonary disease: A Mendelian Randomization study.

Abstract
Blood leukocyte counts (e.g., eosinophil count) are important biomarkers for the onset, classification, and exacerbation of chronic obstructive pulmonary disease (COPD). The causal relationships between them are necessary for the development of COPD treatment strategy, but remain unclear. Here, we implement two-sample bi-directional univariable Mendelian Randomization (MR) and multivariable MR to investigate the causal relationships. Univariable MR find that elevated blood eosinophil count significantly increases the risk of COPD (odds ratio (OR) = 1.22, 95% confidence interval (CI): 1.14-1.30, P = 1.54 × 10-09) and COPD-related hospitalization (OR = 1.44, 95% CI: 1.15-1.80, P = 1.36 × 10-03). Besides, it also significantly decreases the ratio of forced expiratory volume in the first second over forced vital capacity (FEV1/FVC ratio) (OR = 0.942, 95% CI: 0.914-0.971, P = 1.02 × 10-04). These findings are fully supported by multivariate MR results. Interestingly, univariable MR reveals a weak causal relationship between elevated blood eosinophil count and COPD risk in younger people (<65 years) (OR = 1.39, 95% CI: 1.10-1.75, P = 5.52 × 10-03), but not older individuals (OR = 1.20, 95% CI: 0.926-1.55, P = 0.17). Finally, reverse univariable MR reveals the onset of COPD and the decreased FEV1/FVC ratio both lead to increased blood neutrophil count (OR = 1.03, 95% CI: 1.01-1.05, P = 3.40 × 10-03 and OR = 0.947, 95% CI: 0.91-0.986, P = 8.75 × 10-03 respectively). In summary, this MR study demonstrates that high blood eosinophil count is an independent causal mediator of COPD risk, FEV1/FVC decline, and COPD-related hospitalization. The increase in neutrophil count is induced by COPD onset or FEV1/FVC decline. This suggests eosinophil, but not neutrophil, may be used as a therapeutic target for preventing the onset and exacerbation of COPD and FEV1/FVC decline. Therefore, a non-neutrophil-targeted therapeutic strategy for neutrophilic COPD is required in the future.
AuthorsZhifa Han, Huiyuan Hu, Peiran Yang, Baicun Li, Guiyou Liu, Junling Pang, Hongmei Zhao, Jing Wang, Chen Wang
JournalComputers in biology and medicine (Comput Biol Med) Vol. 151 Issue Pt A Pg. 106187 (12 2022) ISSN: 1879-0534 [Electronic] United States
PMID36327882 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2022 The Authors. Published by Elsevier Ltd.. All rights reserved.
Topics
  • Humans
  • Mendelian Randomization Analysis
  • Pulmonary Disease, Chronic Obstructive (genetics)
  • Forced Expiratory Volume
  • Vital Capacity
  • Leukocyte Count

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: