HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Clinical Efficacy, Antibiotic Resistance Genes, Virulence Factors and Outcome of Hospital-Acquired Pneumonia Induced by Klebsiella pneumoniae Carbapenemase 2-Producing with Tigecycline Treatment in the ICU.

AbstractPurpose:
Tigecycline is an agent for carbapenemase-producing Klebsiella pneumonia (KPC-KP), given its penetration into lung tissues. Our study focused on the molecular and clinical efficacy of tigecycline for hospital-acquired pneumonia (HAP) in the ICU.
Patients and Methods:
A retrospective cohort study of 52 adult KPC-KP HAP patients by searching hospital medical records from January 2018 to December 2020 was established to investigate the epidemiology of KPC-KP infections for tigecycline treatment and the associated clinical efficacy of tigecycline. The KPC-KP isolates underwent multilocus sequence typing. Molecular typing, antimicrobial resistance, and virulence profiling were also analyzed by whole-genome sequencing of KPC-KP.
Results:
Among 52 patients with KPC-KP, the ICU mortality rate was 14/52 (27%), and there was no significant statistical difference in mortality between the effective group and failure group (p = 0.754). However, the duration of tigecycline was statistically different between the two groups of patients (14.4 vs 10 days, p=0.046). The total bacterial clearance rate was 6/52 (11.5%). There was no significant statistical difference in both groups (p=0.416). Antibiotic resistance genes (aac3iia) and virulence gene (AREO-iutA, Capsule-wzc) were negatively correlated with clinical efficacy (p = 0.011, OR = 1.237).
Conclusions:
Blakpc was the main carbapenemase in all K. pneumoniae strains. ST11-KL64 KPC-KP was the most common virulence factors in KPC-KP isolates. This study suggested that antibiotic resistance genes (aac3iia) and virulence gene (AREO-iutA, Capsule-wzc) were independent mortality risk factors for patients with Klebsiella pneumoniae carbapenemase-2 producing K. pneumoniae infections, when during the tigecycline treatment. Molecular analysis of K. pneumoniae may provide an option when choosing the antimicrobial treatment.
AuthorsXiang-Rong Bai, Jing-Rong Cao, Zhi-Zhou Wang, Wen-Chao Li, Dian-Dian Chen, Ran Lou, Xin Qu, Su-Ying Yan
JournalInfection and drug resistance (Infect Drug Resist) Vol. 15 Pg. 5545-5555 ( 2022) ISSN: 1178-6973 [Print] New Zealand
PMID36168639 (Publication Type: Journal Article)
Copyright© 2022 Bai et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: