HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Elevated Expression of RGS2 May Underlie Reduced Olfaction in COVID-19 Patients.

Abstract
Anosmia is common in COVID-19 patients, lasting for weeks or months following recovery. The biological mechanism underlying olfactory deficiency in COVID-19 does not involve direct damage to nasal olfactory neurons, which do not express the proteins required for SARS-CoV-2 infection. A recent study suggested that anosmia results from downregulation of olfactory receptors. We hypothesized that anosmia in COVID-19 may also reflect SARS-CoV-2 infection-driven elevated expression of regulator of G protein signaling 2 (RGS2), a key regulator of odorant receptors, thereby silencing their signaling. To test our hypothesis, we analyzed gene expression of nasopharyngeal swabs from SARS-CoV-2 positive patients and non-infected controls (two published RNA-sequencing datasets, 580 individuals). Our analysis found upregulated RGS2 expression in SARS-CoV-2 positive patients (FC = 14.5, Padj = 1.69 × 10-5 and FC = 2.4; Padj = 0.001, per dataset). Additionally, RGS2 expression was strongly correlated with PTGS2, IL1B, CXCL8, NAMPT and other inflammation markers with substantial upregulation in early infection. These observations suggest that upregulated expression of RGS2 may underlie anosmia in COVID-19 patients. As a regulator of numerous G-protein coupled receptors, RGS2 may drive further neurological symptoms of COVID-19. Studies are required for clarifying the cellular mechanisms by which SARS-CoV-2 infection drives the upregulation of RGS2 and other genes implicated in inflammation. Insights on these pathway(s) may assist in understanding anosmia and additional neurological symptoms reported in COVID-19 patients.
AuthorsEden Avnat, Guy Shapira, David Gurwitz, Noam Shomron
JournalJournal of personalized medicine (J Pers Med) Vol. 12 Issue 9 (Aug 28 2022) ISSN: 2075-4426 [Print] Switzerland
PMID36143181 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: