HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

miRNA-seq analysis in skeletal muscle of chicken and function exploration of miR-24-3p.

Abstract
The regulation of skeletal muscle growth and development in chicken is complex. MicroRNAs (miRNAs) have been found to play an important role in the process, and more research is needed to further understand the regulatory mechanism of miRNAs. In this study, leg muscles of Jinghai yellow chickens at 300 d with low body weight (slow-growing group) and high body weight (fast-growing group) were collected for miRNA sequencing (miRNA-seq) and Bioinformatics analysis revealed 12 differentially expressed miRNAs (DEMs) between the two groups. We predicted 150 target genes for the DEMs, and GO and KEGG pathway analysis showed the target genes of miR-24-3p and novel_miR_133 were most enriched in the terms related to growth and development. Moreover, networks of DEMs and target genes showed that miR-24-3p and novel_miR_133 were the 2 core miRNAs. Hence, miR-24-3p was selected for further functional exploration in chicken primary myoblasts (CPMs) with molecular biology technologies including qPCR, cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and immunofluorescence. When proliferating CPMs were transfected with miR-24-3p mimic, the expression of cyclin dependent kinase inhibitor 1A (P21) was up-regulated and both CCK-8 and EdU assays showed that the proliferation of CPMs was inhibited. However, when the inhibitor was transfected into the proliferating CPMs, the opposite results were found. In differentiated CPMs, transfection with miR-24-3p mimic resulted in up regulation of MYOD, MYOG and MYHC after 48 h. Myotube areas also increased significantly compared to the mimic negative control (NC) group. When treated with inhibitor, differentiation CPMs produced the opposite effects. Overall, we revealed 2 miRNAs (novel_miR_133 and miR-24-3p) significantly related with growth and development and further proved that miR-24-3p could suppress the proliferation and promote differentiation of CPMs. The results would facilitate understanding the effects of miRNAs on the growth and development of chickens at the post-transcriptional level and could also have an important guiding role in yellow-feathered chicken breeding.
AuthorsPengfei Wu, Mingliang He, Xinchao Zhang, Kaizhi Zhou, Tao Zhang, Kaizhou Xie, Guojun Dai, Jinyu Wang, Xinglong Wang, Genxi Zhang
JournalPoultry science (Poult Sci) Vol. 101 Issue 11 Pg. 102120 (Nov 2022) ISSN: 1525-3171 [Electronic] England
PMID36113166 (Publication Type: Journal Article)
CopyrightCopyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical References
  • MicroRNAs
  • 4-chlorophenyl methyl sulfide
Topics
  • Animals
  • Chickens
  • MicroRNAs (genetics, metabolism)
  • Muscle, Skeletal (metabolism)
  • Body Weight

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: