HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

MAO-B Inhibitor, KDS2010, Alleviates Spinal Nerve Ligation-induced Neuropathic Pain in Rats Through Competitively Blocking the BDNF/TrkB/NR2B Signaling.

Abstract
MAO-B inhibitors have been implicated to reverse neuropathic pain behaviors. Our previous study has demonstrated that KDS2010 (KDS), a newly developed reversible MAO-B inhibitor, could attenuate Paclitaxel (PTX)-induced tactile hypersensitivity in mice through suppressing reactive oxidant species (ROS)-decreased inhibitory GABA synaptic transmission in the spinal cord. In this study, we evaluated the analgesic effect of KDS under a new approach, in which KDS acts on dorsal horn sensory neurons to reduce excitatory transmission. Oral administration of KDS effectively enhanced mechanical thresholds in the spinal nerve ligation (SNL) induced neuropathic pain in rats. Moreover, we discovered that although treatment with KDS increased brain-derived neurotrophic factor (BDNF) levels, KDS inhibited Tropomyosin receptor kinase B (TrkB) receptor activation, suppressing increased p-NR2B-induced hyperexcitability in spinal dorsal horn sensory neurons after nerve injury. In addition, KDS showed its anti-inflammatory effects by reducing microgliosis and astrogliosis and the activation of MAPK and NF-ᴋB inflammatory pathways in these glial cells. The levels of ROS production in the spinal cords after the SNL procedure were also decreased with KDS treatment. Taken together, our results suggest that KDS may represent a promising therapeutic option for treating neuropathic pain. PERSPECTIVE: Our study provides evidence suggesting the mechanisms by which KDS, a novel MAO-B inhibitor, can be effective in pain relief. KDS, by targeting multiple mechanisms involved in BDNF/TrkB/NR2B-related excitatory transmission and neuroinflammation, may represent the next future of pain medicine.
AuthorsThuỳ Linh Phạm, Chan Noh, Chiranjivi Neupane, Ramesh Sharma, Hyun Jin Shin, Ki Duk Park, C Justin Lee, Hyun-Woo Kim, So Yeong Lee, Jin Bong Park
JournalThe journal of pain (J Pain) Vol. 23 Issue 12 Pg. 2092-2109 (12 2022) ISSN: 1528-8447 [Electronic] United States
PMID35940543 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Brain-Derived Neurotrophic Factor
  • Reactive Oxygen Species
  • Monoamine Oxidase
Topics
  • Rats
  • Mice
  • Animals
  • Brain-Derived Neurotrophic Factor (metabolism)
  • Hyperalgesia (drug therapy, etiology, metabolism)
  • Reactive Oxygen Species (metabolism, pharmacology, therapeutic use)
  • Rats, Sprague-Dawley
  • Neuralgia (drug therapy, metabolism)
  • Spinal Nerves
  • Spinal Cord
  • Monoamine Oxidase (metabolism, pharmacology, therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: