HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Antimicrobial Properties of Silver-Modified Denture Base Resins.

Abstract
The surface quality of denture base resins allows for easy colonization by microorganisms including Candida albicans and Staphylococcus aureus, which cause major diseases of the oral cavity such as denture stomatitis. The widespread use of silver nanoparticles (AgNPs) in various fields of medicine has led to research of their possible application in dentistry, mostly in the prevention of bacterial adhesion, proliferation, and biofilm formation. The aim of the study was to synthesize cold and heat-curing denture base resins modified with AgNPs and AgCl, and evaluate the potential of the modified resins to reduce the growth of C. albicans and S.aureus. The produced material was characterized by Fourier transform infrared spectroscopy (FTIR). The antimicrobial potential of the modified material was demonstrated by the disc-diffusion method, microdilution method, and a modified microdilution method (i.e., disk-diffusion method in broth with viable counting). Spectroscopy confirmed the incorporation of biocidal materials into the structure of the denture base resins. The AgCl and AgNPs modified resins showed an antimicrobial effect. The significance of the study is in the potential therapeutic effects of the modified materials for prevention and threating staphylococci and candida in elderly patients, who are in most cases denture wearers and have a greater susceptibility to develop opportunistic infections. Modified denture base resins can significantly reduce the presence of infection at the point of contact between the denture and the mucous membrane of the prosthetic restoration. Biological tests of modified denture base resins will follow.
AuthorsNikola Gligorijević, Tatjana Mihajlov-Krstev, Milena Kostić, Ljubiša Nikolić, Nemanja Stanković, Vesna Nikolić, Ana Dinić, Marko Igić, Nirit Bernstein
JournalNanomaterials (Basel, Switzerland) (Nanomaterials (Basel)) Vol. 12 Issue 14 (Jul 18 2022) ISSN: 2079-4991 [Print] Switzerland
PMID35889677 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: