HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

High power electromagnetic pulse applicators for evaluation of biological effects induced by electromagnetic radiation waves.

Abstract
The effects of electromagnetic radiation waves on health is one of the major public concerns. These waves are mainly produced at a large scale but it is important to evaluate these effects on biological samples at the laboratory scale. Here we developed a set of micro applicators, which allow evaluating the effect of electromagnetic fields on biological samples with volumes in the microliter range. The applicators can be coupled to an optical microscope and allow a real-time observation of potential structural and functional alterations of the tested sample induced by different waveforms. New design approaches are suggested to simultaneously achieve maximized electric field coupling effect and optimized electric field homogeneity in the tested sample, while minimizing the return loss when the applicators are loaded with the biological samples. These applicators allow studying the biological effect of a variety of different signals, due to their wide frequency bandwidth (beyond 1.5 GHz) and their high permissible power. In addition, different electromagnetic parameters such as the electromagnetic field magnitude, pulse repetitive factor, number of bursts or delay between bursts may be set. The efficacy of the applicators was addressed for three different signals: two types of electromagnetic waves - a damped sinusoid centered at 200 MHz (wide band signal), a radar-like signal at 1.5 GHz (the ultra-narrow band signal) and a train of millisecond square-wave monopolar electric field pulses (causing electroporation). The biological effects were thus assessed (at the microscopic scale) on two different biological models, the giant unilamellar vesicles, and tumor and normal human cells, as well as being compared to results obtained (at full scale) with signals generated by antennas.
AuthorsFlavien Pillet, Laure Gibot, Alexandre Catrain, Jelena Kolosnjaj-Tabi, Kristelle Courtois, Thomas Chretiennot, Elisabeth Bellard, Jacques Tarayre, Muriel Golzio, René Vezinet, Marie-Pierre Rols
JournalRSC advances (RSC Adv) Vol. 8 Issue 29 Pg. 16319-16329 (Apr 27 2018) ISSN: 2046-2069 [Electronic] England
PMID35542224 (Publication Type: Journal Article)
CopyrightThis journal is © The Royal Society of Chemistry.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: