HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Correlation of hypoxia PET tracer uptake with hypoxic radioresistance in cancer cells: PET biomarkers of resistance to stereotactic radiation therapy?

AbstractPURPOSE:
The pO2 threshold of an ideal PET hypoxia tracer for radiotherapy planning in cancer would match those observed in clinically and biologically relevant processes such as radioresistance and HIF1α expression. To identify such tracers, we directly compared uptake in vitro of hypoxia PET tracers ([18F]FMISO, [64Cu]CuATSM, and analogues [64Cu]CuATS, [64Cu]CuATSE, [64Cu]CuCTS, [64Cu]CuDTS, [64Cu]CuDTSE, [64Cu]CuDTSM) with levels of radioresistance and HIF1α expression in cultured cancer cells under identical hypoxic conditions ranging from extreme hypoxia to normoxia. Pimonidazole uptake was also compared as a marker of hypoxia.
METHODS:
A custom-built hypoxia apparatus enabled all experiments to be performed under identical hypoxic conditions with constant measurement of pO2 in media using an OxyLab pO2™ probe. HCT116 human colonic carcinoma and MCF-7 human Caucasian breast adenocarcinoma cells were irradiated using a cobalt teletherapy unit. Clonogenic assays were used to assess survival. HIF1α expression was determined by western blotting, tracer uptake by gamma counting and pimonidazole binding by flow cytometry.
RESULTS:
Radioresistance, pimonidazole binding and HIF1α expression increased gradually as pO2 decreased between 25 mmHg and 0 mmHg. In contrast, all the PET hypoxia tracers showed a sharp increase in uptake only when pO2 levels fell below 1 mmHg. Above this threshold, tracer uptake was not elevated above that in normoxic cells.
CONCLUSION:
This study highlights an important mismatch in pO2 thresholds between these PET tracers and other markers of hypoxia: tracer uptake only occurred at oxygen levels that were well below levels that induced radioresistance, pimonidazole uptake and HIF1α expression. Although their pO2 thresholds do not match the threshold for resistance to conventionally fractionated radiotherapy (pO2 2.5-10 mmHg), their specificity for extreme hypoxia (pO2 ≪ 1 mmHg) suggests these PET tracers may be of particular use to predict outcomes in stereotactic radiation therapy where these maximally resistant cells play a key role in determining the biological effect.
AuthorsKazumi Chia, Rowena L Paul, Amanda J Weeks, Marium Naeem, Gregory E D Mullen, David Landau, Philip J Blower
JournalNuclear medicine and biology (Nucl Med Biol) 2022 Jul-Aug Vol. 110-111 Pg. 10-17 ISSN: 1872-9614 [Electronic] United States
PMID35468342 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Biomarkers
Topics
  • Biomarkers
  • Cell Hypoxia
  • Humans
  • Hypoxia
  • Neoplasms (diagnostic imaging, radiotherapy)
  • Positron-Emission Tomography
  • Radiosurgery

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: