HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Human "live cadaver" neurovascular model for proximal and distal mechanical thrombectomy in stroke.

AbstractBACKGROUND:
Preclinical testing platforms that accurately replicate complex human cerebral vasculature are critical to advance neurointerventional knowledge, tools, and techniques. Here, we introduced and validated a human "live cadaveric" head-and-neck neurovascular model optimized for proximal and distal vascular occlusion and recanalization techniques.
METHODS:
Human cadaveric head-and-neck specimens were cannulated bilaterally in the jugular veins, carotid, and vertebral arteries. Specimens were then coupled with modular glass models of the aorta and extracranial carotid arteries, as well as radial and femoral access ports. Intracranial physiological flow was simulated using a flow-delivery system and blood-mimicking fluid. Baseline anatomy, histological, and mechanical properties of cerebral arteries were compared with those of fresh specimens. Radiopaque clot analogs were embolized to replicate proximal and distal arterial occlusions, followed by thrombectomy. Experienced interventionalists scored the model on different aspects.
RESULTS:
Compared with counterpart fresh human arteries, formalin-fixed arteries showed similar mechanical properties, including maximum stretch, increased tensile strength/stiffness, and friction coefficients were also not significantly different. On histology, minimal endothelial damage was noted in arteries after 3 months of light fixation, otherwise the arterial wall maintained the structural integrity. Contrast angiographies showed no micro- or macro-vasculature obstruction. Proximal and distal occlusions created within the middle cerebral arteries were consistently obtained and successfully recanalized. Additionally, interventionists scored the model highly realistic, indicating great similarity to patients' vasculature.
CONCLUSIONS:
The human "live cadaveric" neurovascular model accurately replicates the anatomy, mechanics, and hemodynamics of cerebral vasculature and allows the performance of neurointerventional procedures equivalent to those done in patients.
AuthorsJorge L Arturo Larco, Sarosh Irfan Madhani, Yang Liu, Mehdi Abbasi, Adnan H Shahid, Oana Madalina Mereuta, Ramanathan Kadirvel, Harry J Cloft, David F Kallmes, Waleed Brinjikji, Luis Savastano
JournalJournal of neurointerventional surgery (J Neurointerv Surg) Vol. 15 Issue 5 Pg. 465-472 (May 2023) ISSN: 1759-8486 [Electronic] England
PMID35418449 (Publication Type: Journal Article)
Copyright© Author(s) (or their employer(s)) 2023. No commercial re-use. See rights and permissions. Published by BMJ.
Topics
  • Humans
  • Stroke (diagnostic imaging, surgery)
  • Middle Cerebral Artery (surgery)
  • Cerebral Arteries
  • Vertebral Artery
  • Thrombectomy (methods)
  • Treatment Outcome

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: