HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

UV Irradiation of Vaccinia Virus-Infected Cells Impairs Cellular Functions, Introduces Lesions into the Viral Genome, and Uncovers Repair Capabilities for the Viral Replication Machinery.

Abstract
Vaccinia virus (VV), the prototypic poxvirus, encodes a repertoire of proteins responsible for the metabolism of its large dsDNA genome. Previous work has furthered our understanding of how poxviruses replicate and recombine their genomes, but little is known about whether the poxvirus genome undergoes DNA repair. Our studies here are aimed at understanding how VV responds to exogenous DNA damage introduced by UV irradiation. Irradiation of cells prior to infection decreased protein synthesis and led to an ∼12-fold reduction in viral yield. On top of these cell-specific insults, irradiation of VV infections at 4 h postinfection (hpi) introduced both cyclobutene pyrimidine dimer (CPD) and 6,4-photoproduct (6,4-PP) lesions into the viral genome led to a nearly complete halt to further DNA synthesis and to a further reduction in viral yield (∼35-fold). DNA lesions persisted throughout infection and were indeed present in the genomes encapsidated into nascent virions. Depletion of several cellular proteins that mediate nucleotide excision repair (XP-A, -F, and -G) did not render viral infections hypersensitive to UV. We next investigated whether viral proteins were involved in combatting DNA damage. Infections performed with a virus lacking the A50 DNA ligase were moderately hypersensitive to UV irradiation (∼3-fold). More strikingly, when the DNA polymerase inhibitor cytosine arabinoside (araC) was added to wild-type infections at the time of UV irradiation (4 hpi), an even greater hypersensitivity to UV irradiation was seen (∼11-fold). Virions produced under the latter condition contained elevated levels of CPD adducts, strongly suggesting that the viral polymerase contributes to the repair of UV lesions introduced into the viral genome. IMPORTANCE Poxviruses remain of significant interest because of their continuing clinical relevance, their utility for the development of vaccines and oncolytic therapies, and their illustration of fundamental principles of viral replication and virus/cell interactions. These viruses are unique in that they replicate exclusively in the cytoplasm of infected mammalian cells, providing novel challenges for DNA viruses. How poxviruses replicate, recombine, and possibly repair their genomes is still only partially understood. Using UV irradiation as a form of exogenous DNA damage, we have examined how vaccinia virus metabolizes its genome following insult. We show that even UV irradiation of cells prior to infection diminishes viral yield, while UV irradiation during infection damages the genome, causes a halt in DNA accumulation, and reduces the viral yield more severely. Furthermore, we show that viral proteins, but not the cellular machinery, contribute to a partial repair of the viral genome following UV irradiation.
AuthorsConor W Templeton, Paula Traktman
JournalJournal of virology (J Virol) Vol. 96 Issue 9 Pg. e0213721 (05 11 2022) ISSN: 1098-5514 [Electronic] United States
PMID35404095 (Publication Type: Journal Article)
Chemical References
  • Viral Proteins
Topics
  • Animals
  • DNA Damage
  • DNA Repair
  • Genome, Viral (radiation effects)
  • Mammals
  • Ultraviolet Rays
  • Vaccinia virus (genetics, radiation effects)
  • Viral Proteins (metabolism)
  • Virus Replication

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: