HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

BTG2 as a tumor target for the treatment of luminal A breast cancer.

Abstract
As one of the most common breast cancer subtypes, luminal A breast cancer is sensitive to endocrine-based therapy and insensitive to chemotherapy. Patients with luminal A subtype of breast cancer have a relatively good prognosis compared with that of patients with other subtypes of breast cancer. However, with the increased incidence in endocrine resistance and severe side effects, simple endocrine therapy has become unsuitable for the treatment of luminal A breast cancer. Therefore, identifying novel therapeutic targets for luminal A breast cancer may accelerate the development of an effective therapeutic strategy. The bioinformatical analysis of the current study, which included KEGG and GO analyses of the GSE20437 dataset containing 24 healthy and 18 breast cancer tissue samples, identified key target genes associated with breast cancer. Moreover, survival analysis results revealed that a low expression of BTG2 was significantly associated with the low survival rate of patients with breast cancer, indicated that B-cell translocation gene 2 (BTG2) may be a potential target in breast cancer. However, BTG2 may be cancer type-dependent, as overexpression of BTG2 has been demonstrated to suppress the proliferation of pancreatic and lung cancer cells, but promote the proliferation of bladder cancer cells. Since the association between BTG2 and luminal A-subtype breast cancer remains unclear, it is important to understand the biological function of BTG2 in luminal A breast cancer. Based on the expression levels of estrogen receptor, progesterone receptor and human epidermal growth factor receptor, MCF-7 cells were selected in the present study as a luminal A breast cancer cell type. MTT, Transwell invasion and wound healing assays revealed that overexpression of BTG2 suppressed the levels of MCF-7 cell proliferation, migration and invasion. In addition, the downregulation of BTG2 at the mRNA and protein level was also confirmed in luminal A breast tumor tissue, which was consistent with the results in vitro. These results indicated that BTG2 may act as an effective target for the treatment of luminal A breast cancer.
AuthorsRunzhi Wang, Ronghua Wang, Jinjun Tian, Jian Wang, Huaxiao Tang, Tao Wu, Hui Wang
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 23 Issue 5 Pg. 339 (May 2022) ISSN: 1792-1015 [Electronic] Greece
PMID35401805 (Publication Type: Journal Article)
CopyrightCopyright: © Wang et al.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: