HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Surface-Charge-Switchable and Size-Transformable Thermosensitive Nanocomposites for Chemo-Photothermal Eradication of Bacterial Biofilms in Vitro and in Vivo.

Abstract
The appearance of multidrug-resistant bacteria and their biofilms presents a serious threat to modern medical systems. Herein, we fabricated a novel gold-nanorod-based chemo-photothermal-integrated antimicrobial platform with surface-charge-switchable and near-infrared (NIR)-induced size-transformable activities that show an enhanced killing efficiency against methicillin-resistant Staphylococcus aureus (MRSA) in both planktonic and biofilm phenotypes. The nanocomposites are prepared by in situ copolymerization using N-isopropyl acrylamide (NIPAM), acrylic acid (AA), and N-allylmethylamine (MAA) as monomers on the surfaces of gold nanorods (GNRs). Ciprofloxacin (CIP) is loaded onto polymer shells of nanocomposites with a loading content of 9.8%. The negatively charged nanocomposites switch to positive upon passive accumulation at the infectious sites, which promotes deep biofilm penetration and bacterial adhesion of the nanoparticles. Subsequently, NIR irradiation triggers the nanocomposites to rapidly shrink in volume, further increasing the depth of biofilm penetration. The NIR-triggered, ultrafast volume shrinkage causes an instant release of CIP on the bacterial surface, realizing the synergistic benefits of chemo-photothermal therapy. Both in vitro and in vivo evidence demonstrate that drug-loaded nanocomposites could eradicate clinical MRSA biofilms. Taken together, the multifunctional chemo-photothermal-integrated antimicrobial platform, as designed, is a promising antimicrobial agent against MRSA infections.
AuthorsMeihui Yin, Min Yang, Daoping Yan, Lijiao Yang, Xiaohui Wan, Jipeng Xiao, Yongchao Yao, Jianbin Luo
JournalACS applied materials & interfaces (ACS Appl Mater Interfaces) Vol. 14 Issue 7 Pg. 8847-8864 (Feb 23 2022) ISSN: 1944-8252 [Electronic] United States
PMID35138798 (Publication Type: Journal Article)
Chemical References
  • Gold
Topics
  • Biofilms
  • Gold (pharmacology)
  • Methicillin-Resistant Staphylococcus aureus
  • Nanocomposites (therapeutic use)
  • Nanotubes
  • Phototherapy

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: