HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

RepSox effectively promotes the induced differentiation of sheep fibroblasts into adipocytes via the inhibition of the TGF‑β1/Smad pathway.

Abstract
Previous reports have demonstrated that RepSox can function as a replacement for cMyc and Sox2 in the reprogramming of cells into induced pluripotent stem cells (iPSCs), as well as increasing the levels of bone morphogenetic protein (BMP)‑3 and inducing the phosphorylation of Smad1 in mouse embryonic stem cells. In the present study, it was demonstrated that RepSox caused the visible morphological transformation of sheep fibroblasts; however, no significant alterations in cell proliferation, apoptosis or chromosome aberrations were observed. Moreover, RepSox increased the plasticity of long‑term cryopreserved sheep fibroblasts, and further promoted differentiation into adipocytes. RepSox treatment led to a notable decrease in the expression of components of the transforming growth factor (TGF)‑β signaling pathway, particularly Smad2/3 phosphorylation. RepSox also activated the BMP pathway, promoted the reprogramming of cells from fibroblasts into adipocytes and induced mesenchymal‑epithelial transition. It is worth noting that RepSox notably increased the expression of octamer‑binding transcription factor 4 and L‑Myc, whereas Sox2 and Nanog expression were not detected. The results of high‑throughput RNA sequencing revealed that the levels of differentially expressed genes (DEGs) involved in various metabolic processes were markedly upregulated in the RepSox‑treated fibroblasts, while the DEGs in the majority of signaling pathways were markedly downregulated. On the whole, the present study demonstrates that RepSox can promote the plasticity of sheep fibroblasts and facilitates the differentiation of adipocytes via increasing BMP expression and inhibiting the activation of the TGF‑β signaling pathway.
AuthorsYu Guo, Huan Zhu, Xiangchen Li, Caiyun Ma, Yanan Li, Tingting Sun, Yuanyuan Wang, Chunjing Wang, Weijun Guan, Changqing Liu
JournalInternational journal of molecular medicine (Int J Mol Med) Vol. 48 Issue 2 (Aug 2021) ISSN: 1791-244X [Electronic] Greece
PMID34132357 (Publication Type: Journal Article)
Chemical References
  • Bone Morphogenetic Protein 4
  • Pyrazoles
  • Pyridines
  • RepSox
  • Smad Proteins
  • Transforming Growth Factor beta1
  • Bone Morphogenetic Protein Receptors, Type I
Topics
  • Adipocytes (cytology, drug effects, metabolism)
  • Animals
  • Apoptosis (drug effects, genetics)
  • Bone Morphogenetic Protein 4 (genetics, metabolism)
  • Bone Morphogenetic Protein Receptors, Type I (genetics, metabolism)
  • Cell Differentiation (drug effects, genetics)
  • Cell Proliferation (drug effects, genetics)
  • Cells, Cultured
  • Fibroblasts (cytology, drug effects, metabolism)
  • Gene Expression (drug effects)
  • Male
  • Phosphorylation (drug effects)
  • Pyrazoles (pharmacology)
  • Pyridines (pharmacology)
  • RNA-Seq (methods)
  • Sheep
  • Signal Transduction (drug effects, genetics)
  • Smad Proteins (genetics, metabolism)
  • Transforming Growth Factor beta1 (genetics, metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: