HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Biodegradable plastics in the air and soil environment: Low degradation rate and high microplastics formation.

Abstract
In recent years, the promotion and use of biodegradable plastics (BPs) are growing into a general trend. Here the degradation performance of different types of BPs was investigated in the natural environment. Their degradation levels followed the order of pure BPs> BP blends> claimed "BP"≈ non-biodegradable plastic after 6-month incubation. Photo- and biodegradation were the main degradation mechanisms of these plastics in the air and soil, respectively. Poly(p-dioxanone) (PPDO) exhibited the highest weight loss potentials in both air (54.7 ± 9.1%) and soil (56.8 ± 4.8%), due to its special ether bond and the rich and diverse microorganisms on its biofilms. The microbiota on PPDO was distinct and enriched with Chloroflexi and Firmicutes that responsible for carbon cycle and organic degradation. The weight loss was only 1.1-8.0% for poly(lactic acid), and 0.8-6.8% for poly(butylene adipate-co-terephthalate), and other plastics are basically non-degradable. Of note, numerous microplastics were formed after PPDO degradation, with 441 ± 326 and 2103 ± 131 item/g plastic in the air and soil, respectively. Taken together, the monitoring of BP biodegradation in the natural environment is of vital importance, and it is risky to promote large-scale application of BPs if the knowledge gap of their environmental behavior has not been well addressed.
AuthorsJin Liao, Qiqing Chen
JournalJournal of hazardous materials (J Hazard Mater) Vol. 418 Pg. 126329 (09 15 2021) ISSN: 1873-3336 [Electronic] Netherlands
PMID34118549 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2021 Elsevier B.V. All rights reserved.
Chemical References
  • Biodegradable Plastics
  • Microplastics
  • Plastics
  • Soil
Topics
  • Biodegradable Plastics
  • Biodegradation, Environmental
  • Microplastics
  • Plastics
  • Soil

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: