HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Targeted Profiling of Short-, Medium-, and Long-Chain Fatty Acyl-Coenzyme As in Biological Samples by Phosphate Methylation Coupled to Liquid Chromatography-Tandem Mass Spectrometry.

Abstract
Fatty acyl-coenzyme As (acyl-CoAs) are of central importance in lipid metabolism pathways. Short-chain acyl-CoAs are usually part of metabolomics, and medium- to (very) long-chain acyl-CoAs are focus of lipidomics studies. However, owing to the specific complex and amphiphilic nature contributed by fatty acyl chains and hydrophilic CoA moiety, lipidomic analysis of acyl-CoAs is still challenging, especially in terms of sample preparation and chromatographic coverage. In this work, we propose a derivatization strategy of acyl-CoAs based on phosphate methylation. After derivatization, full coverage (from free CoA to C25:0-CoA) and good peak shape in liquid chromatography were achieved. At the same time, analyte loss due to the high affinity of phosphate groups to glass and metallic surfaces was resolved, which is beneficial for routine analysis in large-scale lipidomics studies. A sample preparation method based on mixed-mode SPE was developed to optimize extraction recoveries and allow optimal integration of the derivatization process in the analytical workflow. LC-MS/MS was performed with targeted data acquisition by SRM transitions, which were constructed based on similar fragmentation rules observed for all methylated acyl-CoAs. To achieve accurate quantification, uniformly 13C-labeled metabolite extract from yeast cells was taken as internal standards. Odd-chain and stable isotope-labeled acyl-CoAs were used as surrogate calibrants in the same matrix. LOQs were between 16.9 nM (short-chain acyl-CoAs) and 4.2 nM (very-long-chain acyl-CoAs). This method was validated in cultured cells and was applied in HeLa cells and human platelets of coronary artery disease patients. It revealed distinct acyl-CoA profiles in HeLa cells and platelets. The results showed that this method can effectively detect acyl-CoAs in biological samples. Considering their central importance in many de novo lipid biosynthesis and remodeling processes, this targeted method offers a valid foundation for future lipidomics analysis of acyl-CoA profiles in biological samples, particularly those concerning metabolic syndrome.
AuthorsPeng Li, Meinrad Gawaz, Madhumita Chatterjee, Michael Lämmerhofer
JournalAnalytical chemistry (Anal Chem) Vol. 93 Issue 9 Pg. 4342-4350 (03 09 2021) ISSN: 1520-6882 [Electronic] United States
PMID33620217 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Acyl Coenzyme A
  • Phosphates
Topics
  • Acyl Coenzyme A (metabolism)
  • Chromatography, Liquid
  • HeLa Cells
  • Humans
  • Methylation
  • Phosphates
  • Tandem Mass Spectrometry

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: