HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Therapeutic potential of iron chelators on osteoporosis and their cellular mechanisms.

Abstract
Iron is an essential trace element in the metabolism of almost all living organisms. Iron overload can disrupt bone homeostasis by significant inhibition of osteogenic differentiation and stimulation of osteoclastogenesis, consequently leading to osteoporosis. Iron accumulation is also involved in the osteoporosis induced by multiple factors, such as estrogen deficiency, ionizing radiation, and mechanical unloading. Iron chelators are first developed for treating iron overloaded disorders. However, growing evidence suggests that iron chelators can be potentially used for the treatment of bone loss. In this review, we focus on the therapeutic effects of iron chelators on bone loss. Iron chelators have therapeutic effects not only on iron overload induced osteoporosis, but also on osteoporosis induced by estrogen deficiency, ionizing radiation, and mechanical unloading, and in Alzheimer's disease-associated osteoporotic deficits. Iron chelators differently affect the cellular behaviors of bone cells. For osteoblast lineage cells (bone mesenchymal stem cells and osteoblasts), iron chelation stimulates osteogenic differentiation. Conversely, iron chelation significantly inhibits osteoclast differentiation. These different responses may be associated with the different needs of iron during differentiation. Fibroblast growth factor 23, angiogenesis, and antioxidant capability are also involved in the osteoprotective effects of iron chelators.
AuthorsJian Zhang, Hai Zhao, Gang Yao, Penghai Qiao, Longfei Li, Shuguang Wu
JournalBiomedicine & pharmacotherapy = Biomedecine & pharmacotherapie (Biomed Pharmacother) Vol. 137 Pg. 111380 (May 2021) ISSN: 1950-6007 [Electronic] France
PMID33601146 (Publication Type: Journal Article, Review)
CopyrightCopyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.
Chemical References
  • Iron Chelating Agents
  • Iron
Topics
  • Animals
  • Humans
  • Iron (metabolism)
  • Iron Chelating Agents (therapeutic use)
  • Osteogenesis (drug effects)
  • Osteoporosis (drug therapy, pathology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: