HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Adjuvanting a subunit SARS-CoV-2 nanoparticle vaccine to induce protective immunity in non-human primates.

Abstract
The development of a portfolio of SARS-CoV-2 vaccines to vaccinate the global population remains an urgent public health imperative. Here, we demonstrate the capacity of a subunit vaccine under clinical development, comprising the SARS-CoV-2 Spike protein receptor-binding domain displayed on a two-component protein nanoparticle (RBD-NP), to stimulate robust and durable neutralizing antibody (nAb) responses and protection against SARS-CoV-2 in non-human primates. We evaluated five different adjuvants combined with RBD-NP including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an alpha-tocopherol-containing squalene-based oil-in-water emulsion used in pandemic influenza vaccines; AS37, a TLR-7 agonist adsorbed to Alum; CpG 1018-Alum (CpG-Alum), a TLR-9 agonist formulated in Alum; or Alum, the most widely used adjuvant. All five adjuvants induced substantial nAb and CD4 T cell responses after two consecutive immunizations. Durable nAb responses were evaluated for RBD-NP/AS03 immunization and the live-virus nAb response was durably maintained up to 154 days post-vaccination. AS03, CpG-Alum, AS37 and Alum groups conferred significant protection against SARS-CoV-2 infection in the pharynges, nares and in the bronchoalveolar lavage. The nAb titers were highly correlated with protection against infection. Furthermore, RBD-NP when used in conjunction with AS03 was as potent as the prefusion stabilized Spike immunogen, HexaPro. Taken together, these data highlight the efficacy of the RBD-NP formulated with clinically relevant adjuvants in promoting robust immunity against SARS-CoV-2 in non-human primates.
AuthorsPrabhu S Arunachalam, Alexandra C Walls, Nadia Golden, Caroline Atyeo, Stephanie Fischinger, Chunfeng Li, Pyone Aye, Mary Jane Navarro, Lilin Lai, Venkata Viswanadh Edara, Katharina Roltgen, Kenneth Rogers, Lisa Shirreff, Douglas E Ferrell, Samuel Wrenn, Deleah Pettie, John C Kraft, Marcos C Miranda, Elizabeth Kepl, Claire Sydeman, Natalie Brunette, Michael Murphy, Brooke Fiala, Lauren Carter, Alexander G White, Meera Trisal, Ching-Lin Hsieh, Kasi Russell-Lodrigue, Christopher Monjure, Jason Dufour, Lara Doyle-Meyer, Rudolph B Bohm, Nicholas J Maness, Chad Roy, Jessica A Plante, Kenneth S Plante, Alex Zhu, Matthew J Gorman, Sally Shin, Xiaoying Shen, Jane Fontenot, Shakti Gupta, Derek T O Hagan, Robbert Van Der Most, Rino Rappuoli, Robert L Coffman, David Novack, Jason S McLellan, Shankar Subramaniam, David Montefiori, Scott D Boyd, JoAnne L Flynn, Galit Alter, Francois Villinger, Harry Kleanthous, Jay Rappaport, Mehul Suthar, Neil P King, David Veesler, Bali Pulendran
JournalbioRxiv : the preprint server for biology (bioRxiv) (Feb 11 2021) United States
PMID33594366 (Publication Type: Preprint)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: