HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

o-Anisidine Dimer, 2-Methoxy-N4-(2-methoxyphenyl) Benzene-1,4-diamine, in Rat Urine Associated with Urinary bladder Carcinogenesis.

Abstract
Monocyclic aromatic amines, o-toluidine (o-Tol) and its structural analog o-anisidine (o-Ans), are IARC Group 1 and Group 2A urinary bladder carcinogens, respectively, and are involved in metabolic activation and DNA damage. Our recent study revealed that 2-methyl-N4-(2-methylphenyl) benzene-1,4-diamine (MMBD), a p-semidine-type homodimer of o-Tol, was detected and identified in an in vitro reaction of o-Tol with S9 mix and in vivo urinary samples of o-Tol-exposed rats. Potent mutagenic, genotoxic, and cytotoxic activities were reported with MMBD, suggesting its involvement in urinary bladder carcinogenesis. However, it remains unknown whether o-Ans is converted to active metabolites to induce DNA damage in a similar manner as o-Tol. In this study, we report that a novel o-Ans metabolite, 2-methoxy-N4-(2-methoxyphenyl) benzene-1,4-diamine (MxMxBD), a dimer by head-to-tail binding (p-semidine form), was for the first time identified in o-Ans-exposed rat urine. MxMxBD induced a stronger mutagenicity in N-acetyltransferase overexpressed Salmonella typhimurium strains and potent genotoxicity and cytotoxicity in human bladder carcinoma T24 cells compared with o-Ans. These results suggest that MxMxBD may to some extent contribute toward urinary bladder carcinogenesis. In addition to homodimerization, such as MxMxBD, heterodimerizations were observed when o-Ans was coincubated with o-Tol or aniline (Ani) in in vitro reactions with S9 mix. This study highlights the important consideration of homodimerizations and heterodimerizations of monocyclic aromatic amines, including o-Ans, o-Tol, and Ani, in the evaluation of the combined exposure risk of bladder carcinogenesis.
AuthorsTakuma Kobayashi, Takeshi Toyoda, Yuya Tajima, Shinji Kishimoto, Yuta Tsunematsu, Michio Sato, Kohei Matsushita, Takanori Yamada, Yuko Shimamura, Shuichi Masuda, Masako Ochiai, Kumiko Ogawa, Kenji Watanabe, Takeji Takamura-Enya, Yukari Totsuka, Keiji Wakabayashi, Noriyuki Miyoshi
JournalChemical research in toxicology (Chem Res Toxicol) Vol. 34 Issue 3 Pg. 912-919 (03 15 2021) ISSN: 1520-5010 [Electronic] United States
PMID33587850 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Chemical References
  • Carcinogens
Topics
  • Animals
  • Carcinogens (chemistry, toxicity)
  • Male
  • Molecular Structure
  • Mutagenicity Tests
  • Rats
  • Rats, Inbred F344
  • Urinary Bladder Neoplasms (chemically induced)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: