HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

P300/CBP Associated Factor (PCAF) Deficiency Enhances Diet-Induced Atherosclerosis in ApoE3*Leiden Mice via Systemic Inhibition of Regulatory T Cells.

Abstract
Background: Inflammatory stimuli induced by NF-kB drive atherosclerotic lesion formation. The epigenetic P300/CBP associated factor (PCAF) post-transcriptionally acetylates FoxP3, which is required for regulatory T-cell (Treg) differentiation and immune modulation. We hypothesize that PCAF deficiency affects atherosclerosis via regulation of regulatory Tregs. Method: ApoE3*Leiden (n = 13) and ApoE3*LeidenxPCAF-/- (n = 13) were fed a high-fat diet (HFD) containing 1.25% cholesterol. Systemic FoxP3+ T cells were measured every 4 weeks by flow cytometry (n = 6). After 5-months of HFD, mice were euthanized, and hearts and blood were collected. IL-6 and TNFα concentrations were measured in plasma to identify systemic inflammatory responses. Compositional and morphometrical analyses were performed on the atherosclerotic lesions in the aortic sinuses. Results: After 5 months of HFD, plasma cholesterol concentrations were not different for ApoE3*LeidenxPCAF-/- compared to ApoE3*Leiden mice. Expression of FoxP3 by systemic CD4+ T cells decreased 1.8 fold in ApoE3*LeidenxPCAF-/- after 5 months HFD and remained significantly reduced after 5 months of HFD. Systemic TNFα and IL-6 concentrations were comparable, whereas the atherosclerotic lesion size in ApoE3*LeidenxPCAF-/- mice was increased by 28% compared to ApoE3*Leiden mice. In atherosclerotic lesions, no differences were observed in macrophage differentiation or VSMC content, although a small increase in collagen was identified. Conclusion: Our data show that PCAF deficiency resulted in a decrease in circulatory FoxP3+ regulatory T cells and ameliorated atherosclerotic lesions with no differences in systemic inflammation or macrophage differentiation in the atherosclerotic lesions. This suggests that PCAF regulates atherosclerosis via modulation of FoxP3+ regulatory T cell differentiation.
AuthorsAlwin de Jong, Rob C M de Jong, Erna A Peters, Ramon Arens, J Wouter Jukema, Margreet R de Vries, Paul H A Quax
JournalFrontiers in cardiovascular medicine (Front Cardiovasc Med) Vol. 7 Pg. 604821 ( 2020) ISSN: 2297-055X [Print] Switzerland
PMID33585580 (Publication Type: Journal Article)
CopyrightCopyright © 2021 de Jong, de Jong, Peters, Arens, Jukema, de Vries and Quax.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: