HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Renal tubular injury induced by glyphosate combined with hard water: the role of cytosolic phospholipase A2.

AbstractBACKGROUND:
The combined effects of glyphosate and hard water on chronic kidney disease of unknown etiology (CDKu) have attracted much interest, but the mechanisms remain unknown. Cytoplasmic phospholipase A2 (cPLA2) plays a key role in the acute and chronic inflammatory reactions. This study explored the effect of glyphosate combined with hard water on renal tubules and the possible targets and mechanisms involved.
METHODS:
In vivo experiments were conducted to investigate the synergistic effects and potential mechanisms of glyphosate and hard water on renal tubular injury in mice.
RESULTS:
Administration of glyphosate in mice resulted in elevated levels of β2-microglobulin (β2-MG), albumin (ALB), and serum creatinine (SCr) compared to control mice. This increase was more pronounce when glyphosate was combined with hard water. In the glyphosate-treated mice, small areas of the kidney revealed fibroblast proliferation and vacuolar degeneration, particularly at the higher dose of 400 mg/kg glyphosate. However, the combination of glyphosate and hard water induced an even greater degree of pathological changes in the kidney. Immunofluorescence and western blot analyses showed that glyphosate and hard water had a coordinated effect on calcium ions (Ca2+)-activated phospholipase A2 and the activation may play a key role in inflammation and renal tubular injury. Exposure to glyphosate alone or glyphosate plus hard water increased the levels of oxidative stress markers and inflammatory biomarkers, namely, thromboxane A2 (TX-A2), leukotriene B4 (LTB4), prostaglandin E2 (PGE2), nitric oxide synthase (NOS), and nitric oxide (NO). Parameters of oxidative stress, including the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were decreased. Further analysis showed that the levels of these biomarkers were significantly different between the mice treated with glyphosate plus hard water and the mice treated with glyphosate alone.
CONCLUSIONS:
These findings suggested that hard water combined with glyphosate can induce renal tubular injury in mice, and this may involve mitogen-activated protein kinases (MAPK)/cytosolic phospholipase A2 (cPLA2)/arachidonic acid (AA) and its downstream factors.
AuthorsRuojing Wang, Jing Chen, Fan Ding, Lin Zhang, Xuan Wu, Yi Wan, Jianying Hu, Xiaoyan Zhang, Qing Wu
JournalAnnals of translational medicine (Ann Transl Med) Vol. 9 Issue 2 Pg. 130 (Jan 2021) ISSN: 2305-5839 [Print] China
PMID33569432 (Publication Type: Journal Article)
Copyright2021 Annals of Translational Medicine. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: