HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Deciphering the Role of Filamin B Calponin-Homology Domain in Causing the Larsen Syndrome, Boomerang Dysplasia, and Atelosteogenesis Type I Spectrum Disorders via a Computational Approach.

Abstract
Filamins (FLN) are a family of actin-binding proteins involved in regulating the cytoskeleton and signaling phenomenon by developing a network with F-actin and FLN-binding partners. The FLN family comprises three conserved isoforms in mammals: FLNA, FLNB, and FLNC. FLNB is a multidomain monomer protein with domains containing an actin-binding N-terminal domain (ABD 1-242), encompassing two calponin-homology domains (assigned CH1 and CH2). Primary variants in FLNB mostly occur in the domain (CH2) and surrounding the hinge-1 region. The four autosomal dominant disorders that are associated with FLNB variants are Larsen syndrome, atelosteogenesis type I (AOI), atelosteogenesis type III (AOIII), and boomerang dysplasia (BD). Despite the intense clustering of FLNB variants contributing to the LS-AO-BD disorders, the genotype-phenotype correlation is still enigmatic. In silico prediction tools and molecular dynamics simulation (MDS) approaches have offered the potential for variant classification and pathogenicity predictions. We retrieved 285 FLNB missense variants from the UniProt, ClinVar, and HGMD databases in the current study. Of these, five and 39 variants were located in the CH1 and CH2 domains, respectively. These variants were subjected to various pathogenicity and stability prediction tools, evolutionary and conservation analyses, and biophysical and physicochemical properties analyses. Molecular dynamics simulation (MDS) was performed on the three candidate variants in the CH2 domain (W148R, F161C, and L171R) that were predicted to be the most pathogenic. The MDS analysis results showed that these three variants are highly compact compared to the native protein, suggesting that they could affect the protein on the structural and functional levels. The computational approach demonstrates the differences between the FLNB mutants and the wild type in a structural and functional context. Our findings expand our knowledge on the genotype-phenotype correlation in FLNB-related LS-AO-BD disorders on the molecular level, which may pave the way for optimizing drug therapy by integrating precision medicine.
AuthorsUdhaya Kumar S, Srivarshini Sankar, Salma Younes, Thirumal Kumar D, Muneera Naseer Ahmad, Sarah Samer Okashah, Balu Kamaraj, Abeer Mohammed Al-Subaie, George Priya Doss C, Hatem Zayed
JournalMolecules (Basel, Switzerland) (Molecules) Vol. 25 Issue 23 (Nov 26 2020) ISSN: 1420-3049 [Electronic] Switzerland
PMID33255942 (Publication Type: Journal Article, Meta-Analysis)
Chemical References
  • Calcium-Binding Proteins
  • Filamins
  • Microfilament Proteins
  • Solvents
  • calponin
Topics
  • Calcium-Binding Proteins (chemistry)
  • Chemical Phenomena
  • Dwarfism (etiology)
  • Evolution, Molecular
  • Facies
  • Filamins (chemistry, genetics, metabolism)
  • Genetic Variation
  • Humans
  • Microfilament Proteins (chemistry)
  • Models, Molecular
  • Molecular Dynamics Simulation
  • Mutation
  • Osteochondrodysplasias (etiology)
  • Polymorphism, Single Nucleotide
  • Protein Conformation
  • Protein Domains
  • Solvents (chemistry)
  • Structure-Activity Relationship

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: