HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Femoral nerve decompression and sartorius-to-quadriceps nerve transfers for partial femoral nerve injury: a cadaveric study and early case series.

AbstractOBJECTIVE:
Partial femoral nerve injuries cause significant disability with ambulation. Due to their more proximal and superficial location, sartorius branches are often spared in femoral nerve injuries. In this article, the authors report the benefits of femoral nerve decompression, demonstrate the feasibility of sartorius-to-quadriceps nerve transfers in a cadaveric study, describe the surgical technique, and report clinical results.
METHODS:
Four fresh-frozen cadaveric lower limbs were dissected for anatomical analysis of the sartorius nerve. In addition, a retrospective review of patients with partial femoral nerve injuries treated with femoral nerve decompression and sartorius-to-quadriceps nerve transfers was conducted. Pre- and postoperative knee extension Medical Research Council (MRC) grades and pain scores (visual analog scale) were collected.
RESULTS:
Up to 6 superficial femoral branches innervate the sartorius muscle just distal to the inguinal ligament. Each branch yielded an average of 672 nerve fibers (range 99-1850). Six patients underwent femoral nerve decompression and sartorius-to-quadriceps nerve transfers. Four patients also had concomitant obturator-to-quadriceps nerve transfers. At final follow-up (average 13.4 months), all patients achieved MRC grade 4-/5 or greater knee extension. The average preoperative pain score was 5.2, which decreased to 2.2 postoperatively (p = 0.03).
CONCLUSIONS:
Femoral nerve decompression and nerve transfer using sartorius branches are a viable tool for restoring function in partial femoral nerve injuries. Sartorius branches serve as ideal donors in quadriceps nerve transfers because they are expendable, are close to their recipients, and have an adequate supply of nerve fibers.
AuthorsColin W McInnes, Austin Y Ha, Hollie A Power, Thomas H Tung, Amy M Moore
JournalJournal of neurosurgery (J Neurosurg) Vol. 135 Issue 3 Pg. 904-911 (Nov 06 2020) ISSN: 1933-0693 [Electronic] United States
PMID33157531 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: