HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cetuximab-Triptolide Conjugate Suppresses the Growth of EGFR-Overexpressing Lung Cancers through Targeting RNA Polymerase II.

Abstract
To overcome poor pharmacokinetics and toxicity of triptolide (TPL), a natural compound that exhibits potent anticancer activities, we developed a novel antibody-drug conjugate (ADC) to specifically deliver TPL to epidermal growth factor receptor (EGFR)-overexpressing non-small cell lung cancer (NSCLC) and others. The ADC (Cet-TPL) is made by conjugation of TPL to lysine residues of cetuximab (Cet), a clinically available anti-EGFR monoclonal antibody. Studies of antitumor efficacy demonstrated that Cet-TPL drastically suppressed in vitro proliferation and in vivo growth of these EGFR-overexpressing cancers, including NSCLC A549 and H1299 cells and two patient-derived xenografts, and head and neck squamous carcinoma UM-SCC6 cell, while it did not inhibit the proliferation and growth of NSCLC H520 that rarely expresses EGFR. Furthermore, immunofluorescence analysis revealed that Cet-TPL was effectively internalized and transported into lysosomes of EGFR-overexpressing cells. Cet-TPL effectively led to degradation of RNA polymerase II (Pol II) and demethylation of histone H3 lysines, and significantly induced apoptosis in these EGFR-overexpressing cancers. Compared with TPL, Cet, or their combination, Cet-TPL displayed higher target-specific cytotoxicity against EGFR-expressing cancers and much lower in vivo toxicity. In addition, Cet-TPL efficiently suppressed the activated EGFR pathway in UM-SCC6 cancer cells. Taken together, Cet-TPL represents a potent targeting therapeutic agent against EGFR-overexpressing NSCLC and others.
AuthorsKeqiang Zhang, Yuelong Ma, Yuming Guo, Ting Sun, Jun Wu, Rajendra P Pangeni, Min Lin, Wendong Li, David Horne, Dan J Raz
JournalMolecular therapy oncolytics (Mol Ther Oncolytics) Vol. 18 Pg. 304-316 (Sep 25 2020) ISSN: 2372-7705 [Print] United States
PMID32775615 (Publication Type: Journal Article)
Copyright© 2020 The Author(s).

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: