HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Distinguishing Obstructive Versus Central Apneas in Infrared Video of Sleep Using Deep Learning: Validation Study.

AbstractBACKGROUND:
Sleep apnea is a respiratory disorder characterized by an intermittent reduction (hypopnea) or cessation (apnea) of breathing during sleep. Depending on the presence of a breathing effort, sleep apnea is divided into obstructive sleep apnea (OSA) and central sleep apnea (CSA) based on the different pathologies involved. If the majority of apneas in a person are obstructive, they will be diagnosed as OSA or otherwise as CSA. In addition, as it is challenging and highly controversial to divide hypopneas into central or obstructive, the decision about sleep apnea type (OSA vs CSA) is made based on apneas only. Choosing the appropriate treatment relies on distinguishing between obstructive apnea (OA) and central apnea (CA).
OBJECTIVE:
The objective of this study was to develop a noncontact method to distinguish between OAs and CAs.
METHODS:
Five different computer vision-based algorithms were used to process infrared (IR) video data to track and analyze body movements to differentiate different types of apnea (OA vs CA). In the first two methods, supervised classifiers were trained to process optical flow information. In the remaining three methods, a convolutional neural network (CNN) was designed to extract distinctive features from optical flow and to distinguish OA from CA.
RESULTS:
Overnight sleeping data of 42 participants (mean age 53, SD 15 years; mean BMI 30, SD 7 kg/m2; 27 men and 15 women; mean number of OA 16, SD 30; mean number of CA 3, SD 7; mean apnea-hypopnea index 27, SD 31 events/hour; mean sleep duration 5 hours, SD 1 hour) were collected for this study. The test and train data were recorded in two separate laboratory rooms. The best-performing model (3D-CNN) obtained 95% accuracy and an F1 score of 89% in differentiating OA vs CA.
CONCLUSIONS:
In this study, the first vision-based method was developed that differentiates apnea types (OA vs CA). The developed algorithm tracks and analyses chest and abdominal movements captured via an IR video camera. Unlike previously developed approaches, this method does not require any attachment to a user that could potentially alter the sleeping condition.
AuthorsSina Akbarian, Nasim Montazeri Ghahjaverestan, Azadeh Yadollahi, Babak Taati
JournalJournal of medical Internet research (J Med Internet Res) Vol. 22 Issue 5 Pg. e17252 (05 22 2020) ISSN: 1438-8871 [Electronic] Canada
PMID32441656 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Copyright©Sina Akbarian, Nasim Montazeri Ghahjaverestan, Azadeh Yadollahi, Babak Taati. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 22.05.2020.
Topics
  • Deep Learning (standards)
  • Female
  • Humans
  • Male
  • Middle Aged
  • Polysomnography (methods)
  • Sleep Apnea, Central (diagnosis, physiopathology)
  • Sleep Apnea, Obstructive (diagnosis, physiopathology)
  • Spectrophotometry, Infrared (methods)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: