HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Poly (ADP-Ribose) polymerase-1 (PARP-1) overactivity plays a pathogenic role in bile acids-induced nephrotoxicity in cholestatic rats.

Abstract
Cholestatic liver disease is a clinical complication with a wide range of etiologies. The liver is the primary organ influenced by cholestasis. Other organs, rather than the liver (e.g., kidneys), could also be affected by cholestatic liver disease. Cholestasis-induced renal injury is known as cholemic nephropathy (CN). Although the structural and functional alterations of the kidney in cholestasis have been well described, the cellular and molecular mechanisms of CN are not well understood. Some studies mentioned the role of oxidative stress and mitochondrial impairment in CN. Several cellular targets, including proteins, lipids, and DNA, could be affected by oxidative stress. Poly (ADP-Ribose) polymerase-1 (PARP-1) is an enzyme that its physiological activity plays a fundamental role in DNA repair. However, PARP-1 overexpression is associated with enhanced oxidative stress and cell death. The current study was designed to evaluate the role of PARP-1 activity in the pathogenesis of CN. Bile duct ligated (BDL) rats were treated with nicotinamide (NA) as a PARP-1 inhibitor. Kidney, urine, and plasma samples were collected at scheduled time intervals (3, 7, 14, and 28 days after BDL surgery). Serum and urine biomarkers of kidney injury, markers of oxidative stress and DNA damage, PARP-1 expression and activity in the kidney tissue, inflammatory response, renal fibrosis markers, and kidney histopathological alterations were assessed. Significant changes in the serum and urine biomarkers of kidney injury were evident in the BDL rats. Markers of oxidative stress were increased, and tissue ATP levels and antioxidant capacity were decreased in the kidney of cholestatic animals. A significant increase in PARP-1 expression and activity was evident in BDL rats (3, 7, 14, and 28 days after BDL). Moreover, inflammatory response (IL-1β and TNF-α expression; and myeloperoxidase activity), renal tissue histopathological alterations, and kidney fibrosis (α-SMA and TGF-β expression, as well as collagen deposition) were detected in cholestatic animals. It was found that the PARP-1 inhibitor, NA (50 and 100 mg/kg, i.p), significantly mitigated cholestasis-induced renal injury. The positive effects of NA were more significant at a lower dose and the early stage of CN. These data indicate a pathogenic role for PARP-1 overexpression in CN.
AuthorsAsma Siavashpour, Bahman Khalvati, Negar Azarpira, Hamidreza Mohammadi, Hossein Niknahad, Reza Heidari
JournalToxicology letters (Toxicol Lett) Vol. 330 Pg. 144-158 (May 16 2020) ISSN: 1879-3169 [Electronic] Netherlands
PMID32422328 (Publication Type: Journal Article)
CopyrightCopyright © 2020 Elsevier B.V. All rights reserved.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: