HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Spermine oxidase mediates Helicobacter pylori-induced gastric inflammation, DNA damage, and carcinogenic signaling.

Abstract
Helicobacter pylori infection is the main risk factor for the development of gastric cancer, the third leading cause of cancer death worldwide. H. pylori colonizes the human gastric mucosa and persists for decades. The inflammatory response is ineffective in clearing the infection, leading to disease progression that may result in gastric adenocarcinoma. We have shown that polyamines are regulators of the host response to H. pylori, and that spermine oxidase (SMOX), which metabolizes the polyamine spermine into spermidine plus H2O2, is associated with increased human gastric cancer risk. We now used a molecular approach to directly address the role of SMOX, and demonstrate that Smox-deficient mice exhibit significant reductions of gastric spermidine levels and H. pylori-induced inflammation. Proteomic analysis revealed that cancer was the most significantly altered functional pathway in Smox-/- gastric organoids. Moreover, there was also less DNA damage and β-catenin activation in H. pylori-infected Smox-/- mice or gastric organoids, compared to infected wild-type animals or gastroids. The link between SMOX and β-catenin activation was confirmed in human gastric organoids that were treated with a novel SMOX inhibitor. These findings indicate that SMOX promotes H. pylori-induced carcinogenesis by causing inflammation, DNA damage, and activation of β-catenin signaling.
AuthorsJohanna C Sierra, M Blanca Piazuelo, Paula B Luis, Daniel P Barry, Margaret M Allaman, Mohammad Asim, Thomas A Sebrell, Jordan L Finley, Kristie L Rose, Salisha Hill, Steven L Holshouser, Robert A Casero, John L Cleveland, Patrick M Woster, Kevin L Schey, Diane Bimczok, Claus Schneider, Alain P Gobert, Keith T Wilson
JournalOncogene (Oncogene) Vol. 39 Issue 22 Pg. 4465-4474 (05 2020) ISSN: 1476-5594 [Electronic] England
PMID32350444 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • CTNNB1 protein, mouse
  • Proteome
  • RNA, Messenger
  • beta Catenin
  • Spermine
  • Oxidoreductases Acting on CH-NH Group Donors
  • Spermidine
Topics
  • Adenocarcinoma (etiology, microbiology)
  • Animals
  • Cell Transformation, Neoplastic
  • DNA Damage
  • Gastritis (enzymology, genetics, microbiology, pathology)
  • Helicobacter Infections (enzymology, genetics, pathology)
  • Helicobacter pylori (pathogenicity)
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Organoids
  • Oxidoreductases Acting on CH-NH Group Donors (deficiency, genetics, physiology)
  • Proteome
  • RNA, Messenger (biosynthesis)
  • Signal Transduction
  • Spermidine (biosynthesis)
  • Spermine (metabolism)
  • Stomach Neoplasms (etiology, microbiology)
  • beta Catenin (physiology)
  • Polyamine Oxidase

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: