HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Cystatin C promotes cognitive dysfunction in rats with cerebral microbleeds by inhibiting the ERK/synapsin Ia/Ib pathway.

Abstract
Although higher serum level of cystatin C (CysC) was observed in patients with cerebral microbleeds, its associated role in the disease has not been elucidated. In this work, a rat model of cerebral microbleeds was created with the aim of investigating effects of CysC on cognitive function in rats with cerebral microbleeds and the underlying mechanism. Serum samples of patients with cerebral microbleeds and healthy people of the same age were collected. Levels of cystatin C expression in these samples were measured using CysC kits. Moreover, 48 spontaneously hypertensive rats (SHRs) bred under specific pathogen-free (SPF) conditions were randomly divided into 4 groups: sham surgery control group (sham), model group (CMB), model + empty vector control group (CMB + vehicle), and model + cystatin C overexpression group (CMB + CysC). Expression levels of CysC in hippocampus of rats in each group were measured by western blot analysis. The Y-maze was used to evaluate cognitive function of rats. Hippocampal long-term potentiation (LTP) in rats was assessed by the electrophysiological assay. Alterations in levels of p-ERK1/2 and p-synapsin Ia/b proteins associated with cognitive function were identified by western blot analysis. The serum levels of CysC in patients with cerebral microbleeds were significantly upregulated (P<0.001). After injection of CysC, its expression levels in rat hippocampus were significantly increased (P<0.001), which enhanced the decline in learning and memory function, as well as the decrease of LTP in the rat model of cerebral microbleeds (P<0.001). Western blot results showed that injection of CysC further reduced the levels of p-ERK1/2 and p-synapsin Ia/b in the rat model of microbleeds (P<0.001). CysC was up regulated in serum of patients with cerebral microbleeds. It promoted cognitive dysfunction in rats with microbleeds by inhibiting ERK/synapsin Ia/Ib pathway.
AuthorsGuangna Yu, Xingyuan Sun, Li Li, Lijuan Huang, Hongbin Liu, Shuying Wang, Zhanjun Ren, Yanjiao Zhang
JournalExperimental and therapeutic medicine (Exp Ther Med) Vol. 19 Issue 3 Pg. 2282-2290 (Mar 2020) ISSN: 1792-0981 [Print] Greece
PMID32104295 (Publication Type: Journal Article)
CopyrightCopyright © 2020, Spandidos Publications.

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: