HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Hepatocellular adenomas: is there additional value in using Gd-EOB-enhanced MRI for subtype differentiation?

AbstractPURPOSE:
To differentiate subtypes of hepatocellular adenoma (HCA) based on enhancement characteristics in gadoxetic acid (Gd-EOB) magnetic resonance imaging (MRI).
MATERIALS AND METHODS:
Forty-eight patients with 79 histopathologically proven HCAs who underwent Gd-EOB-enhanced MRI were enrolled (standard of reference: surgical resection). Two blinded radiologists performed quantitative measurements (lesion-to-liver enhancement) and evaluated qualitative imaging features. Inter-reader variability was tested. Advanced texture analysis was used to evaluate lesion heterogeneity three-dimensionally.
RESULTS:
Overall, there were 19 (24%) hepatocyte nuclear factor (HNF)-1a-mutated (HHCAs), 37 (47%) inflammatory (IHCAs), 5 (6.5%) b-catenin-activated (bHCA), and 18 (22.5%) unclassified (UHCAs) adenomas. In the hepatobiliary phase (HBP), 49.5% (39/79) of all adenomas were rated as hypointense and 50.5% (40/79) as significantly enhancing (defined as > 25% intralesional GD-EOB uptake). 82.5% (33/40) of significantly enhancing adenomas were IHCAs, while only 4% (1/40) were in the HHCA subgroup (p < 0.001). When Gd-EOB uptake behavior was considered in conjunction with established MRI features (binary regression model), the area under the curve (AUC) increased from 0.785 to 0.953 for differentiation of IHCA (atoll sign + hyperintensity), from 0.859 to 0.903 for bHCA (scar + hyperintensity), and from 0.899 to 0.957 for HHCA (steatosis + hypointensity). Three-dimensional region of interest (3D ROI) analysis showed significantly increased voxel heterogeneity for IHCAs (p = 0.038).
CONCLUSION:
Gd-EOB MRI is of added value for subtype differentiation of HCAs and reliably identifies the typical heterogeneous HBP uptake of IHCAs. Diagnostic accuracy can be improved significantly by the combined analysis of established morphologic MR appearances and intralesional Gd-EOB uptake.
KEY POINTS:
•Gd-EOB-enhanced MRI is of added value for subtype differentiation of HCA. •IHCA and HHCA can be identified reliably based on their typical Gd-EOB uptake patterns, and accuracy increases significantly when additionally taking established MR appearances into account. •The small numbers of bHCAs and UHCAs remain the source of diagnostic uncertainty.
AuthorsTimo Alexander Auer, Uli Fehrenbach, Christian Grieser, Tobias Penzkofer, Dominik Geisel, Moritz Schmelzle, Tobias Müller, Hendrik Bläker, Daniel Seehofer, Timm Denecke
JournalEuropean radiology (Eur Radiol) Vol. 30 Issue 6 Pg. 3497-3506 (Jun 2020) ISSN: 1432-1084 [Electronic] Germany
PMID32086574 (Publication Type: Journal Article)
Chemical References
  • Contrast Media
  • HNF1A protein, human
  • Hepatocyte Nuclear Factor 1-alpha
  • beta Catenin
  • gadolinium ethoxybenzyl DTPA
  • Gadolinium DTPA
Topics
  • Adenoma, Liver Cell (diagnostic imaging, genetics, metabolism, pathology)
  • Adult
  • Cicatrix (diagnostic imaging, pathology)
  • Contrast Media
  • Fatty Liver (diagnostic imaging, pathology)
  • Female
  • Gadolinium DTPA
  • Hepatocyte Nuclear Factor 1-alpha (genetics)
  • Humans
  • Inflammation (diagnostic imaging, pathology)
  • Liver Neoplasms (diagnostic imaging, genetics, metabolism, pathology)
  • Magnetic Resonance Imaging (methods)
  • Male
  • Middle Aged
  • Radiologists
  • beta Catenin (metabolism)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: