HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Assessing the Diagnostic Yield of Targeted Next-Generation Sequencing for Melanoma and Gastrointestinal Tumors.

Abstract
A common rationale in molecular diagnostic laboratories is that implementation of next-generation sequencing (NGS) enables simultaneous multigene testing, allowing increased information benefit compared with non-NGS assays. However, minimal published data exist to support this justification. The current study compared clinical diagnostic yield of TruSight Tumor 26 Sequencing Panel (TST26) in melanoma, colorectal (CRC), and gastrointestinal stromal (GIST) tumors with non-NGS assays. A total of 1041 formalin-fixed, paraffin-embedded tumors, of melanoma, CRC, and GIST, were profiled. NGS results were compared with non-NGS single-gene or single-variant assays with respect to variant output and diagnostic yield. A total of 79% melanoma and 94% CRC tumors were variant positive by panel testing. TST26 panel improved serine/threonine-protein kinase B-raf (BRAF) variant detection in melanoma compared with single-variant BRAF Val600Glu/Lys (V600E/K) routine tests by 24% and detected variants in genes other than BRAF, NRAS, and KIT, which could impact patient management in 20% additional cases. NGS enhanced diagnostic yield in CRC by 36% when compared with routine single-gene assays. In contrast, no added benefit of NGS-based testing for GIST tumors was observed. TST26 panel either missed or inaccurately called complex insertion/deletion variants in KIT exon 11, which were accurately identified by non-NGS methods. Findings of this study demonstrate the differential impact of cancer site and variant type on diagnostic test information yield from NGS assays.
AuthorsSwati Garg, Sylvie Grenier, Maksym Misyura, Mahadeo A Sukhai, Mariam Thomas, Suzanne Kamel-Reid, Tracy Stockley
JournalThe Journal of molecular diagnostics : JMD (J Mol Diagn) Vol. 22 Issue 4 Pg. 467-475 (04 2020) ISSN: 1943-7811 [Electronic] United States
PMID32036084 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2020 Association for Molecular Pathology and American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Biomarkers, Tumor
  • KIT protein, human
  • Proto-Oncogene Proteins c-kit
  • BRAF protein, human
  • Proto-Oncogene Proteins B-raf
Topics
  • Alleles
  • Biomarkers, Tumor
  • DNA Mutational Analysis (methods)
  • Gastrointestinal Neoplasms (diagnosis, genetics)
  • Genetic Variation
  • High-Throughput Nucleotide Sequencing (methods)
  • Humans
  • Immunohistochemistry
  • Melanoma (diagnosis, genetics)
  • Mutation
  • Proto-Oncogene Proteins B-raf (genetics)
  • Proto-Oncogene Proteins c-kit (genetics)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: