HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Characterization of Lead Compounds Targeting the Selenoprotein Thioredoxin Glutathione Reductase for Treatment of Schistosomiasis.

Abstract
Schistosomiasis is a widespread human parasitic disease currently affecting over 200 million people. Chemotherapy for schistosomiasis relies exclusively on praziquantel. Although significant advances have been made in recent years to reduce the incidence and intensity of schistosome infections, these gains will be at risk should drug-resistant parasites evolve. Thioredoxin glutathione reductase (TGR) is a selenoprotein of the parasite essential for the survival of schistosomes in the mammalian host. Several high-throughput screening campaigns have identified inhibitors of Schistosoma mansoni TGR. Follow up analyses of select active compounds form the basis of the present study. We identified eight compounds effective against ex vivo worms. Compounds 1-5 are active against all major species and development stages. The ability of these compounds to target immature worms is especially critical because praziquantel is poorly active against this stage. Compounds 1-5, 7, and 8 displayed schistosomicidal activity even after only 1 h incubation with the worms. Compounds 1-4 meet or exceed standards set by the World Health Organization for leads for schistosomiasis therapy activity. The mechanism of TGR inhibition was studied further with wild-type and mutant TGR proteins. Compounds 4-6 were found to induce an nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity in TGR, leading to the production of superoxide and hydrogen peroxide. Collectively, this effort has identified several active compound series that may serve as the basis for the development of new schistosomicidal compounds.
AuthorsHaining Lyu, Pavel A Petukhov, Paul R Banta, Ajit Jadhav, Wendy A Lea, Qing Cheng, Elias S J Arnér, Anton Simeonov, Gregory R J Thatcher, Francesco Angelucci, David L Williams
JournalACS infectious diseases (ACS Infect Dis) Vol. 6 Issue 3 Pg. 393-405 (03 13 2020) ISSN: 2373-8227 [Electronic] United States
PMID31939288 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Enzyme Inhibitors
  • Multienzyme Complexes
  • Schistosomicides
  • NADP
  • NADH, NADPH Oxidoreductases
  • thioredoxin glutathione reductase
Topics
  • Animals
  • Drug Discovery
  • Enzyme Inhibitors (pharmacology)
  • High-Throughput Screening Assays
  • Inhibitory Concentration 50
  • Mice
  • Multienzyme Complexes (antagonists & inhibitors, genetics)
  • NADH, NADPH Oxidoreductases (antagonists & inhibitors, genetics)
  • NADP (metabolism)
  • Oxidation-Reduction (drug effects)
  • Schistosoma mansoni (drug effects, enzymology)
  • Schistosomiasis (drug therapy)
  • Schistosomicides (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: