HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Prenatal dioxin exposure and glucose metabolism in the Seveso Second Generation study.

AbstractBACKGROUND:
Exposure to endocrine disrupting compounds such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during susceptible developmental windows may alter risk of metabolic disease later in life. Animal studies of in utero and lactational TCDD exposure report associations with alterations in insulin sensitivity and energy homeostasis, but epidemiologic evidence is limited. We examined the relationship of prenatal TCDD exposure with markers of glucose homeostasis in the Seveso Second Generation study, a unique cohort of children born to TCDD-exposed women resulting from a 1976 explosion in Seveso, Italy.
METHODS:
We included 426 children who were 18 years or older with complete follow-up data including a fasting blood draw. Insulin and glucose were measured and the updated homoeostatic model assessment was used to estimate insulin resistance (HOMA2-IR) and beta-cell function (HOMA2-B). Prenatal TCDD exposure was defined in two ways, as initial maternal serum TCDD concentration and TCDD estimated at pregnancy.
RESULTS:
The children (222 female, 204 male) averaged 28.6 (±6.0) years. We found a 10-fold increase in TCDD estimated at pregnancy was inversely associated with insulin (adj-β = -1.24 μIU/mL, 95% confidence interval (CI): -2.38, -0.09) and HOMA2-B (adj-β = -10.2% decrease, 95% CI: -17.8, -1.9) among daughters, but not sons (insulin: adj-β = 0.57 μIU/mL, 95% CI: -0.84, 1.98, P for interaction = 0.04; and HOMA2-B: adj-β = 0.8% increase, 95% CI -10.7, 13.9, P for interaction = 0.11). Similar effect modification was observed for TCDD estimated at pregnancy and HOMA2-IR (P for interaction = 0.13). The models for initial maternal serum TCDD showed similar effect modification by child sex. The observed associations in daughters showed evidence of mediation by body mass index, which we have previously found to be associated with prenatal TCDD exposure in female offspring.
CONCLUSION:
These results suggest prenatal exposure to TCDD is associated with lower insulin resistance and beta compensation in female offspring, and show evidence of mediation by body mass index.
AuthorsMarcella Warner, Stephen Rauch, Paolo Brambilla, Stefano Signorini, Paolo Mocarelli, Brenda Eskenazi
JournalEnvironment international (Environ Int) Vol. 134 Pg. 105286 (01 2020) ISSN: 1873-6750 [Electronic] Netherlands
PMID31726365 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't, Research Support, U.S. Gov't, Non-P.H.S.)
CopyrightCopyright © 2019 The Authors. Published by Elsevier Ltd.. All rights reserved.
Chemical References
  • Dioxins
  • Endocrine Disruptors
  • Polychlorinated Dibenzodioxins
  • Glucose
Topics
  • Adolescent
  • Adult
  • Child
  • Dioxins
  • Endocrine Disruptors
  • Female
  • Glucose
  • Humans
  • Italy
  • Male
  • Polychlorinated Dibenzodioxins
  • Pregnancy
  • Prenatal Exposure Delayed Effects
  • Young Adult

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: