HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

GNPDA2 Gene Affects Adipogenesis and Alters the Transcriptome Profile of Human Adipose-Derived Mesenchymal Stem Cells.

AbstractBACKGROUND:
Genome-wide association studies have found an obesity-related single-nucleotide polymorphism rs10938397 near the glucosamine-6-phosphate deaminase 2 gene (GNPDA2) encoding, an enzyme that catalyzes the deamination of the glucosamine-6-phosphate involved in the hexosamine signaling pathway, but the molecular mechanisms underlying the missing link between GNPDA2 and obesity remain elusive.
METHODS:
As obesity is accompanied by an increase in the size and the number of adipocytes, the present study investigates the possible mechanism of the GNPDA2 in adipogenesis using GeneChip® Human Transcriptome Array 2.0 in human adipose-derived mesenchymal stem cells.
RESULTS:
We found that overexpression of GNPDA2 enhanced accumulation of lipid droplets, and knocking down the gene decreased accumulation of lipid droplets. GO term enrichment analysis indicated that most differentially expressed genes (DEGs) affected by deficiency of GNPDA2 have functions to lipid and glucose metabolism. Further KEGG enrichment analysis showed that the greatest proportion of DEGs are involved in thermogenesis, peroxisome proliferator-activated receptor (PPAR) signaling pathway, carbon metabolism, and fatty acid metabolism including fatty acid degradation, elongation, and biosynthesis.
CONCLUSION:
These findings suggest that GNPDA2 may be a critical gene for lipid and glucose metabolism, and the expression level of GNPDA2 alters the transcriptome profile of human adipose-derived mesenchymal stem cells.
AuthorsLijun Wu, Feifei Ma, Xiaoyuan Zhao, Mei-Xian Zhang, Jianxin Wu, Jie Mi
JournalInternational journal of endocrinology (Int J Endocrinol) Vol. 2019 Pg. 9145452 ( 2019) ISSN: 1687-8337 [Print] Egypt
PMID31467530 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: