HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Chloride Dysregulation through Downregulation of KCC2 Mediates Neuropathic Pain in Both Sexes.

Abstract
The behavioral features of neuropathic pain are not sexually dimorphic despite sex differences in the underlying neuroimmune signaling. This raises questions about whether neural processing is comparably altered. Here, we test whether the K+-Cl- co-transporter KCC2, which regulates synaptic inhibition, plays an equally important role in development of neuropathic pain in male and female rodents. Past studies on KCC2 tested only males. We find that inhibiting KCC2 in uninjured animals reproduces behavioral and electrophysiological features of neuropathic pain in both sexes and, consistent with equivalent injury-induced downregulation of KCC2, that counteracting chloride dysregulation reverses injury-induced behavioral and electrophysiological changes in both sexes. These findings demonstrate that KCC2 downregulation contributes equally to pain hypersensitivity in males and females. Whereas diverse (and sexually dimorphic) mechanisms regulate KCC2, regulation of intracellular chloride relies almost exclusively on KCC2. Directly targeting KCC2 thus remains a promising strategy for treatment of neuropathic pain in both sexes.
AuthorsJosiane C S Mapplebeck, Louis-Etienne Lorenzo, Kwan Yeop Lee, Cédric Gauthier, Milind M Muley, Yves De Koninck, Steven A Prescott, Michael W Salter
JournalCell reports (Cell Rep) Vol. 28 Issue 3 Pg. 590-596.e4 (07 16 2019) ISSN: 2211-1247 [Electronic] United States
PMID31315039 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
CopyrightCopyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Chemical References
  • Brain-Derived Neurotrophic Factor
  • Carbonic Anhydrase Inhibitors
  • Chlorides
  • N-(4-methylthiazol-2-yl)-2-(6-phenylpyridazin-3-ylthio)acetamide
  • Symporters
  • Thiazoles
  • Thioglycolates
  • potassium-chloride symporters
  • Acetazolamide
Topics
  • Acetazolamide (pharmacology)
  • Animals
  • Brain-Derived Neurotrophic Factor (pharmacology)
  • Carbonic Anhydrase Inhibitors (pharmacology)
  • Chlorides (metabolism)
  • Down-Regulation
  • Female
  • Hyperalgesia (chemically induced, genetics, metabolism)
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Neuralgia (genetics, metabolism, physiopathology)
  • Posterior Horn Cells (drug effects, metabolism, physiology)
  • Rats
  • Rats, Sprague-Dawley
  • Sex Characteristics
  • Spinal Cord (cytology, drug effects, metabolism, surgery)
  • Symporters (antagonists & inhibitors, genetics, metabolism)
  • Thiazoles (pharmacology)
  • Thioglycolates (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: