HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Modulating cardiac conduction during metabolic ischemia with perfusate sodium and calcium in guinea pig hearts.

Abstract
We previously demonstrated that altering extracellular sodium (Nao) and calcium (Cao) can modulate a form of electrical communication between cardiomyocytes termed "ephaptic coupling" (EpC), especially during loss of gap junction coupling. We hypothesized that altering Nao and Cao modulates conduction velocity (CV) and arrhythmic burden during ischemia. Electrophysiology was quantified by optically mapping Langendorff-perfused guinea pig ventricles with modified Nao (147 or 155 mM) and Cao (1.25 or 2.0 mM) during 30 min of simulated metabolic ischemia (pH 6.5, anoxia, aglycemia). Gap junction-adjacent perinexal width ( WP), a candidate cardiac ephapse, and connexin (Cx)43 protein expression and Cx43 phosphorylation at S368 were quantified by transmission electron microscopy and Western immunoblot analysis, respectively. Metabolic ischemia slowed CV in hearts perfused with 147 mM Nao and 2.0 mM Cao; however, theoretically increasing EpC with 155 mM Nao was arrhythmogenic, and CV could not be measured. Reducing Cao to 1.25 mM expanded WP, as expected during ischemia, consistent with reduced EpC, but attenuated CV slowing while delaying arrhythmia onset. These results were further supported by osmotically reducing WP with albumin, which exacerbated CV slowing and increased early arrhythmias during ischemia, whereas mannitol expanded WP, permitted conduction, and delayed the onset of arrhythmias. Cx43 expression patterns during the various interventions insufficiently correlated with observed CV changes and arrhythmic burden. In conclusion, decreasing perfusate calcium during metabolic ischemia enhances perinexal expansion, attenuates conduction slowing, and delays arrhythmias. Thus, perinexal expansion may be cardioprotective during metabolic ischemia. NEW & NOTEWORTHY This study demonstrates, for the first time, that modulating perfusate ion composition can alter cardiac electrophysiology during simulated metabolic ischemia.
AuthorsSharon A George, Gregory Hoeker, Patrick J Calhoun, Michael Entz 2nd, Tristan B Raisch, D Ryan King, Momina Khan, Chandra Baker, Robert G Gourdie, James W Smyth, Morten S Nielsen, Steven Poelzing
JournalAmerican journal of physiology. Heart and circulatory physiology (Am J Physiol Heart Circ Physiol) Vol. 316 Issue 4 Pg. H849-H861 (04 01 2019) ISSN: 1522-1539 [Electronic] United States
PMID30707595 (Publication Type: Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't)
Chemical References
  • Connexin 43
  • Sodium
  • Calcium
Topics
  • Action Potentials (drug effects)
  • Animals
  • Arrhythmias, Cardiac (physiopathology)
  • Calcium (pharmacology)
  • Connexin 43 (metabolism)
  • Gap Junctions (drug effects)
  • Guinea Pigs
  • Heart Conduction System (drug effects, physiopathology)
  • Heart Ventricles (drug effects, physiopathology)
  • In Vitro Techniques
  • Male
  • Myocardial Ischemia (physiopathology)
  • Osmolar Concentration
  • Sodium (pharmacology)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: