HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Penicillin-binding protein 3 is a common adaptive target among Pseudomonas aeruginosa isolates from adult cystic fibrosis patients treated with β-lactams.

AbstractOBJECTIVE:
Determining the mechanisms that modulate β-lactam resistance in clinical Pseudomonas aeruginosa (P. aeruginosa) isolates can be challenging, as the molecular profiles identified in mutation-based or expression-based resistance determinant screens may not correlate with in vitro phenotypes. One of the lesser studied resistance mechanisms in P. aeruginosa is the modification of penicillin-binding protein 3 (pbpB/ftsI). This study reported that nonsynonymous polymorphisms within pbpB frequently occur among β-lactam resistant sputum isolates, and are associated with unique antibiotic susceptibility patterns.
METHODS:
Longitudinally collected isolates (n = 126) from cystic fibrosis (CF) patients with or without recent β-lactam therapy or of non-clinical origin were tested for susceptibility to six β-lactams (aztreonam, ceftazidime, cefsulodin, cefepime, meropenem, and piperacillin). Known β-lactam resistance mechanisms were characterised by polymerase chain reaction (PCR)-based methods, and polymorphisms in the transpeptidase-encoding domain of pbpB identified by sequencing.
RESULTS:
Twelve nonsynonymous polymorphisms were detected among 86 isolates (67%) from five CF patients with a history of β-lactam therapy, compared with one polymorphism in 30 (3.3%) from three patients who had not received β-lactam treatments. No nonsynonymous polymorphisms were found in ten environmental isolates. Multiple pbpB alleles, often with different combinations of polymorphisms, were detected within the population of strains from each CF patient for up to 2.6 years. Traditional patterns of ampC or mexA de-repression reduced expression of oprD or the presence of extended-spectrum β-lactamases were not observed in resistant isolates with nonsynonymous polymorphisms in pbpB.
CONCLUSION:
This study's findings suggest that pbpB is a common adaptive target, and may contribute to the development of β-lactam resistance in P. aeruginosa.
AuthorsShawn T Clark, Utkarshna Sinha, Yu Zhang, Pauline W Wang, Sylva L Donaldson, Bryan Coburn, Valerie J Waters, Yvonne C W Yau, D Elizabeth Tullis, David S Guttman, David M Hwang
JournalInternational journal of antimicrobial agents (Int J Antimicrob Agents) Vol. 53 Issue 5 Pg. 620-628 (May 2019) ISSN: 1872-7913 [Electronic] Netherlands
PMID30664925 (Publication Type: Journal Article)
CopyrightCopyright © 2019 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.
Chemical References
  • Anti-Bacterial Agents
  • Penicillin-Binding Proteins
  • beta-Lactams
Topics
  • Adaptation, Biological
  • Adult
  • Amino Acid Substitution
  • Anti-Bacterial Agents (therapeutic use)
  • Cystic Fibrosis (complications)
  • Female
  • Humans
  • Longitudinal Studies
  • Male
  • Microbial Sensitivity Tests
  • Mutation, Missense
  • Penicillin-Binding Proteins (genetics, metabolism)
  • Polymerase Chain Reaction
  • Pseudomonas Infections (drug therapy, microbiology)
  • Pseudomonas aeruginosa (drug effects, enzymology, genetics, isolation & purification)
  • Sequence Analysis, DNA
  • Sputum (microbiology)
  • beta-Lactam Resistance
  • beta-Lactams (therapeutic use)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: