HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Mental Fatigue Estimation Using EEG in a Vigilance Task and Resting States.

Abstract
Mental fatigue induced by long time mental work can cause deterioration in task performance and increase the risk of accidents. Recently, electroencephalogram (EEG)-based monitoring of mental fatigue has received increasing attention in the field of brain-computer interfaces (BCI). This study aims to employ EEG signals to measure the mental fatigue level by estimating reaction time (RT) in a psychomotor vigilance task (PVT). In a 36-hour sleep deprivation experiment, EEG data from 18 subjects were recorded every four hours in nine blocks, each consisting of three tasks: a 6-minute PVT task and two 3-minute resting states (eyes closed and eyes open). The mean RT in the PVT task showed a generally increasing trend during the 36-hour awake period, reflecting the increase of fatigue over time. For each task, multiple EEG features were extracted and selected to better estimate RT using a multiple linear regression (MLR) method. The correlation between predicted RT and actual RT was evaluated using a leave-one-subject-out (LOSO) validation strategy. After parameter optimization, EEG data from the PVT task obtained a mean correlation coefficient of $0.81 \pm 0.16$ across all subjects. Resting-state EEG data showed lower correlations (eyes-closed: $0.65 \pm 0.20$, eyes-open: $0.50 \pm 0.30)$ partially due to the involvement of shorter data lengths. These results demonstrate the feasibility and robustness of the EEG-based fatigue monitoring method, which could be potential for applications in operational environments.
AuthorsSen Tian, Yijun Wang, Guoya Dong, Weihua Pei, Hongda Chen
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference (Annu Int Conf IEEE Eng Med Biol Soc) Vol. 2018 Pg. 1980-1983 (Jul 2018) ISSN: 2694-0604 [Electronic] United States
PMID30440787 (Publication Type: Journal Article, Research Support, Non-U.S. Gov't)
Topics
  • Electroencephalography
  • Humans
  • Mental Fatigue
  • Psychomotor Performance
  • Reaction Time
  • Wakefulness

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: