HOMEPRODUCTSCOMPANYCONTACTFAQResearchDictionaryPharmaSign Up FREE or Login

Expression profiling analysis of autophagy-related genes in perineural invasion of cutaneous squamous cell carcinoma.

Abstract
The aim of the present study was to identify the potential autophagy-related genes and to explore the underlying molecular mechanisms involved in cutaneous squamous cell carcinoma of head and neck (cSCCHN) by bioinformatics analysis. The Gene Expression Omnibus (GEO) series GSE86544 was downloaded from the GEO database. The primary data was generated from cSCCHN with clinical perineural invasion (PNI) and cSCCHN without PNI, and was further analyzed in order to identify differentially expressed genes (DEGs). The results revealed 239 autophagy-related DEGs. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed and intersected to investigate the predicted functions of the key DEGs, including hypoxia-inducible factor 1α (HIF1A), mitogen-activated protein kinase 8 (MAPK8), mammalian target of rapamycin (mTOR) and B-cell lymphoma 2 like 1 (BCL2L1). Up and downregulated genes shared one pathway, namely 'pathways in cancer'. Next, the protein-protein interaction (PPI) network of the autophagy-related DEGs was constructed using Cytoscape 3.30 software. HIF1A, MAPK8, mTOR and BCL2L1 were key nodes in the PPI network. Additionally, RAB23 gene expression was positively correlated with HIF1A, MAPK8 and ADP ribosylation factor GTPase activating protein 1 (ARFGAP1), but negatively correlated with mTOR and BCL2L1. The present results suggested that the genes HIF1A, MAPK8, mTOR, BCL2L1 and RAB23 may be associated with and serve as potential therapeutic targets in cSCCHN with clinical PNI.
AuthorsLi-Qiang Zheng, Shan-Yi Li, Cheng-Xin Li
JournalOncology letters (Oncol Lett) Vol. 15 Issue 4 Pg. 4837-4848 (Apr 2018) ISSN: 1792-1074 [Print] Greece
PMID29552123 (Publication Type: Journal Article)

Join CureHunter, for free Research Interface BASIC access!

Take advantage of free CureHunter research engine access to explore the best drug and treatment options for any disease. Find out why thousands of doctors, pharma researchers and patient activists around the world use CureHunter every day.
Realize the full power of the drug-disease research graph!


Choose Username:
Email:
Password:
Verify Password:
Enter Code Shown: